Graph-Based Deep Learning for Prediction of Longitudinal Infant Diffusion MRI Data

被引:6
作者
Kim, Jaeil [1 ,2 ,3 ]
Hong, Yoonmi [2 ,3 ]
Chen, Geng [2 ,3 ]
Lin, Weili [2 ,3 ]
Yap, Pew-Thian [2 ,3 ]
Shen, Dinggang [2 ,3 ]
机构
[1] Kyungpook Natl Univ, Sch Comp Sci & Engn, Daegu, South Korea
[2] Univ N Carolina, Dept Radiol, Chapel Hill, NC 27515 USA
[3] Univ N Carolina, BRIC, Chapel Hill, NC 27515 USA
来源
COMPUTATIONAL DIFFUSION MRI (CDMRI 2018) | 2019年
关键词
Brain development; Longitudinal prediction; Diffusion MRI; Graph representation; Graph convolution; Residual graph neural network;
D O I
10.1007/978-3-030-05831-9_11
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
Diffusion MRI affords great value for studying brain development, owing to its capability in assessing brain microstructure in association with myelination. With longitudinally acquired pediatric diffusion MRI data, one can chart the temporal evolution of microstructure and white matter connectivity. However, due to subject dropouts and unsuccessful scans, longitudinal datasets are often incomplete. In this work, we introduce a graph-based deep learning approach to predict diffusion MRI data. The relationships between sampling points in spatial domain (x-space) and diffusion wave-vector domain (q-space) are harnessed jointly (x-q space) in the form of a graph. We then implement a residual learning architecture with graph convolution filtering to learn longitudinal changes of diffusion MRI data along time. We evaluate the effectiveness of the spatial and angular components in data prediction. We also investigate the longitudinal trajectories in terms of diffusion scalars computed based on the predicted datasets.
引用
收藏
页码:133 / 141
页数:9
相关论文
共 13 条
  • [1] [Anonymous], 2018, GROUP NORMALIZATION
  • [2] Geometric Deep Learning Going beyond Euclidean data
    Bronstein, Michael M.
    Bruna, Joan
    LeCun, Yann
    Szlam, Arthur
    Vandergheynst, Pierre
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2017, 34 (04) : 18 - 42
  • [3] Randomly translational activation inspired by the input distributions of ReLU
    Cao, Jiale
    Pang, Yanwei
    Li, Xuelong
    Liang, Jingkun
    [J]. NEUROCOMPUTING, 2018, 275 : 859 - 868
  • [4] Chen Geng, 2017, Med Image Comput Comput Assist Interv, V10433, P629, DOI 10.1007/978-3-319-66182-7_72
  • [5] Improving Estimation of Fiber Orientations in Diffusion MRI Using Inter-Subject Information Sharing
    Chen, Geng
    Zhang, Pei
    Li, Ke
    Wee, Chong-Yaw
    Wu, Yafeng
    Shen, Dinggang
    Yap, Pew-Thian
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [6] Defferrard M., 2016, P ADV NEUR INF PROC, P3844
  • [7] ROBUST ESTIMATION OF LOCATION PARAMETER
    HUBER, PJ
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1964, 35 (01): : 73 - &
  • [8] Isola Phillip., CoRR
  • [9] FSL
    Jenkinson, Mark
    Beckmann, Christian F.
    Behrens, Timothy Ej.
    Woolrich, Mark W.
    Smith, Stephen M.
    [J]. NEUROIMAGE, 2012, 62 (02) : 782 - 790
  • [10] Kwon DS, 2017, PROC IEEE MICR ELECT, P49, DOI 10.1109/MEMSYS.2017.7863336