Efficacy evaluation of 2-D and 3-D U-Net semantic segmentation of normal lungs

被引:0
|
作者
Nemoto, T. [1 ]
Natsumi, F. [2 ]
Masamichi, Y. [3 ]
Atsuhiro, K. [1 ]
Atsuya, T. [4 ]
Etsuo, K. [2 ]
Naoyuki, S. [1 ]
机构
[1] Keio Univ, Dept Radiol, Sch Med, Tokyo, Japan
[2] Tokai Univ, Sch Med, Dept Radiat Oncol, Hiratsuka, Kanagawa, Japan
[3] Fujitsu Ltd, Syst Platform Solut Unit, Tokyo, Japan
[4] Ofuna Chuo Hosp, Radiat Oncol Ctr, Kamakura, Kanagawa, Japan
关键词
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
PO-1700
引用
收藏
页码:S936 / S937
页数:3
相关论文
共 50 条
  • [1] Efficacy evaluation of 2D, 3D U-Net semantic segmentation and atlas-based segmentation of normal lungs excluding the trachea and main bronchi
    Nemoto, Takafumi
    Futakami, Natsumi
    Yagi, Masamichi
    Kumabe, Atsuhiro
    Takeda, Atsuya
    Kunieda, Etsuo
    Shigematsu, Naoyuki
    JOURNAL OF RADIATION RESEARCH, 2020, 61 (02) : 257 - 264
  • [2] Normalization in Training U-Net for 2-D Biomedical Semantic Segmentation
    Zhou, Xiao-Yun
    Yang, Guang-Zhong
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2019, 4 (02) : 1792 - 1799
  • [3] Efficient scheme to perform semantic segmentation on 3-D brain tumor using 3-D u-net architecture
    Zeeshan Shaukat
    Qurratul Ain Farooq
    Chuangbai Xiao
    Saqib Ali
    Faheem Akhtar
    Muhammad Azeem
    Abdul Ahad Zulfiqar
    Multimedia Tools and Applications, 2024, 83 : 25121 - 25134
  • [4] Efficient scheme to perform semantic segmentation on 3-D brain tumor using 3-D u-net architecture
    Shaukat, Zeeshan
    Farooq, Qurratul Ain
    Xiao, Chuangbai
    Ali, Saqib
    Akhtar, Faheem
    Azeem, Muhammad
    Zulfiqar, Abdul Ahad
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (09) : 25121 - 25134
  • [5] A 3D U-Net Based on a Vision Transformer for Radar Semantic Segmentation
    Zhang, Tongrui
    Fan, Yunsheng
    SENSORS, 2023, 23 (24)
  • [6] Multi-scale Masked 3-D U-Net for Brain Tumor Segmentation
    Xu, Yanwu
    Gong, Mingming
    Fu, Huan
    Tao, Dacheng
    Zhang, Kun
    Batmanghelich, Kayhan
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT II, 2019, 11384 : 222 - 233
  • [7] Comparison of tissue segmentation performance between 2D U-Net and 3D U-Net on brain MR Images
    Woo, Boyeong
    Lee, Myungeun
    2021 INTERNATIONAL CONFERENCE ON ELECTRONICS, INFORMATION, AND COMMUNICATION (ICEIC), 2021,
  • [8] 3D U-Net for Brain Tumour Segmentation
    Mehta, Raghav
    Arbel, Tal
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT II, 2019, 11384 : 254 - 266
  • [9] R2U3D: Recurrent Residual 3D U-Net for Lung Segmentation
    Kadia, Dhaval D.
    Alom, Md Zahangir
    Burada, Ranga
    Nguyen, Tam, V
    Asari, Vijayan K.
    IEEE ACCESS, 2021, 9 : 88835 - 88843
  • [10] 3-D RoI-Aware U-Net for Accurate and Efficient Colorectal Tumor Segmentation
    Huang, Yi-Jie
    Dou, Qi
    Wang, Zi-Xian
    Liu, Li-Zhi
    Jin, Ying
    Li, Chao-Feng
    Wang, Lisheng
    Chen, Hao
    Xu, Rui-Hua
    IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (11) : 5397 - 5408