The MLIP package: moment tensor potentials with MPI and active learning

被引:490
作者
Novikov, Ivan S. [1 ]
Gubaev, Konstantin [1 ,2 ]
Podryabinkin, Evgeny, V [1 ]
Shapeev, Alexander, V [1 ]
机构
[1] Skolkovo Innovat Ctr, Skolkovo Inst Sci & Technol, Nobel St 3, Moscow 143026, Russia
[2] Delft Univ Technol, Dept Mat Sci & Engn, Mekelweg 2, NL-2628 CD Delft, Netherlands
来源
MACHINE LEARNING-SCIENCE AND TECHNOLOGY | 2021年 / 2卷 / 02期
基金
俄罗斯科学基金会;
关键词
machine-learning interatomic potentials; active learning; ab initio calculations; TOTAL-ENERGY CALCULATIONS; INTERATOMIC POTENTIALS; THERMAL-CONDUCTIVITY; SEMICONDUCTORS; ACCURACY; DYNAMICS; ALLOYS;
D O I
10.1088/2632-2153/abc9fe
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The subject of this paper is the technology (the 'how') of constructing machine-learning interatomic potentials, rather than science (the 'what' and 'why') of atomistic simulations using machine-learning potentials. Namely, we illustrate how to construct moment tensor potentials using active learning as implemented in the MLIP package, focusing on the efficient ways to automatically sample configurations for the training set, how expanding the training set changes the error of predictions, how to set up ab initio calculations in a cost-effective manner, etc. The MLIP package (short for Machine-Learning Interatomic Potentials) is available at https://mlip.skoltech.ru/download/.
引用
收藏
页数:19
相关论文
共 83 条
[1]  
[Anonymous], 2017, ARXIV170401212
[2]   High-dimensional neural network potentials for metal surfaces: A prototype study for copper [J].
Artrith, Nongnuch ;
Behler, Joerg .
PHYSICAL REVIEW B, 2012, 85 (04)
[3]   On representing chemical environments [J].
Bartok, Albert P. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW B, 2013, 87 (18)
[4]   Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons [J].
Bartok, Albert P. ;
Payne, Mike C. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW LETTERS, 2010, 104 (13)
[5]   Generalized neural-network representation of high-dimensional potential-energy surfaces [J].
Behler, Joerg ;
Parrinello, Michele .
PHYSICAL REVIEW LETTERS, 2007, 98 (14)
[6]   Perspective: Machine learning potentials for atomistic simulations [J].
Behler, Joerg .
JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (17)
[7]   De novo exploration and self-guided learning of potential-energy surfaces [J].
Bernstein, Noam ;
Csanyi, Gabor ;
Deringer, Volker L. .
NPJ COMPUTATIONAL MATERIALS, 2019, 5 (1)
[8]   Learning scheme to predict atomic forces and accelerate materials simulations [J].
Botu, V. ;
Ramprasad, R. .
PHYSICAL REVIEW B, 2015, 92 (09)
[9]   Adaptive machine learning framework to accelerate ab initio molecular dynamics [J].
Botu, Venkatesh ;
Ramprasad, Rampi .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2015, 115 (16) :1074-1083
[10]   Machine learning of accurate energy-conserving molecular force fields [J].
Chmiela, Stefan ;
Tkatchenko, Alexandre ;
Sauceda, Huziel E. ;
Poltavsky, Igor ;
Schuett, Kristof T. ;
Mueller, Klaus-Robert .
SCIENCE ADVANCES, 2017, 3 (05)