Quantitative Mitigation of Timing Side Channels

被引:13
作者
Tizpaz-Niari, Saeid [1 ]
Cerny, Pavol [1 ]
Trivedi, Ashutosh [1 ]
机构
[1] Univ Colorado Boulder, Boulder, CO 80309 USA
来源
COMPUTER AIDED VERIFICATION, CAV 2019, PT I | 2019年 / 11561卷
关键词
MODEL;
D O I
10.1007/978-3-030-25540-4_8
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Timing side channels pose a significant threat to the security and privacy of software applications. We propose an approach for mitigating this problem by decreasing the strength of the side channels as measured by entropy-based objectives, such as min-guess entropy. Our goal is to minimize the information leaks while guaranteeing a user-specified maximal acceptable performance overhead. We dub the decision version of this problem Shannon mitigation, and consider two variants, deterministic and stochastic. First, we show that the deterministic variant is NP-hard. However, we give a polynomial algorithm that finds an optimal solution from a restricted set. Second, for the stochastic variant, we develop an approach that uses optimization techniques specific to the entropy-based objective used. For instance, for min-guess entropy, we used mixed integer-linear programming. We apply the algorithm to a threat model where the attacker gets to make functional observations, that is, where she observes the running time of the program for the same secret value combined with different public input values. Existing mitigation approaches do not give confidentiality or performance guarantees for this threat model. We evaluate our tool SCHMIT on a number of micro-benchmarks and real-world applications with different entropy-based objectives. In contrast to the existing mitigation approaches, we show that in the functional-observation threat model, SCHMIT is scalable and able to maximize confidentiality under the performance overhead bound.
引用
收藏
页码:140 / 160
页数:21
相关论文
共 43 条
  • [31] Papadimitriou C.H., 1998, COMBINATORIAL OPTIMI
  • [32] Synthesis of Adaptive Side-Channel Attacks
    Quoc-Sang Phan
    Bang, Lucas
    Pasareanu, Corina S.
    Malacaria, Pasquale
    Bultan, Tevfik
    [J]. 2017 IEEE 30TH COMPUTER SECURITY FOUNDATIONS SYMPOSIUM (CSF), 2017, : 328 - 342
  • [33] Ramsay JO, 2009, USE R, P1, DOI 10.1007/978-0-387-98185-7_1
  • [34] RIVEST RL, 1978, COMMUN ACM, V21, P120, DOI [10.1145/359340.359342, 10.1145/357980.358017]
  • [35] Schinzel S., 2011, 2 INT WORKSH CONSTR
  • [36] Smith G, 2009, LECT NOTES COMPUT SC, V5504, P288
  • [37] Song LH, 2014, ACM SIGPLAN NOTICES, V49, P561, DOI [10.1145/2714064.2660234, 10.1145/2660193.2660234]
  • [38] Tizpaz-Niari S., 2018, ARXIV180810502
  • [39] Tizpaz-Niari S, 2018, AAAI CONF ARTIF INTE, P2468
  • [40] Discriminating Traces with Time
    Tizpaz-Niari, Saeid
    Cerny, Pavol
    Chang, Bor-Yuh Evan
    Sankaranarayanan, Sriram
    Trivedi, Ashutosh
    [J]. TOOLS AND ALGORITHMS FOR THE CONSTRUCTION AND ANALYSIS OF SYSTEMS, TACAS 2017, PT II, 2017, 10206 : 21 - 37