Investigation of Surface- and Buffer-Induced Current Collapse in GaN High-Electron Mobility Transistors Using a Soft Switched Pulsed I-V Measurement

被引:58
作者
Wang, Maojun [1 ]
Yan, Dawei [2 ]
Zhang, Chuan [1 ,3 ]
Xie, Bing [1 ]
Wen, Cheng P. [1 ]
Wang, Jinyan [1 ]
Hao, Yilong [1 ]
Wu, Wengang [1 ]
Shen, Bo [4 ]
机构
[1] Peking Univ, Inst Microelect, Beijing 100871, Peoples R China
[2] China Acad Engn Phys, Res Ctr Laser Fus, Mianyang 621900, Peoples R China
[3] Peking Univ, Shenzhen Grad Sch, Sch Elect & Comp Engn, Shenzhen 518055, Peoples R China
[4] Peking Univ, Dept Phys, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
AlGaN/GaN; HEMT; current collapse; surface states; buffer; pulsed IV; ALGAN/GAN HEMTS; SILICON; IMPACT;
D O I
10.1109/LED.2014.2356720
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this letter, we investigated the behaviors of surface-and buffer-induced current collapse in AlGaN/GaN high-electron mobility transistors (HEMTs) using a soft-switched pulsed I-V measurement with different quiescent bias points. It is found that the surface-and buffer-related current collapse have different relationship with the gate and drain biases (V-GS0, V-DS0) during quiescent bias stress. The surface-induced current collapse in devices without passivation monotonically increases with the negative V-GS0, suggesting that an electron injection to the surface from gate leakage is the dominant mechanism and the Si3N4 passivation could effectively eliminate such current collapse. The buffer-induced current collapse in devices with intentionally carbon-doped buffer layer exhibits a different relationship with V-GS0 after surface passivation. The buffer-related current collapse shows a bell-shaped behavior with V-GS0, suggesting that a hot electron trapping in the buffer is the dominant mechanism. The soft-switched pulsed I-V measurement provides an effective method to distinguish between the surface-and buffer-related current collapse in group III-nitride HEMTs.
引用
收藏
页码:1094 / 1096
页数:3
相关论文
共 12 条
[1]   DEPENDENCE OF IONIZATION CURRENT ON GATE BIAS IN GAAS-MESFETS [J].
CANALI, C ;
NEVIANI, A ;
TEDESCO, C ;
ZANONI, E ;
CETRONIO, A ;
LANZIERI, C .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1993, 40 (03) :498-501
[2]  
Chen J.-T., 2013, APPL PHYS LETT, V102
[3]  
Ghosh S., 2014, P CS MANTECH C, P349
[4]   Impact of Channel Hot Electrons on Current Collapse in AlGaN/GaN HEMTs [J].
Hwang, Injun ;
Kim, Jongseob ;
Chong, Soogine ;
Choi, Hyun-Sik ;
Hwang, Sun-Kyu ;
Oh, Jaejoon ;
Shin, Jai Kwang ;
Chung, U-In .
IEEE ELECTRON DEVICE LETTERS, 2013, 34 (12) :1494-1496
[5]   GaN on Si Technologies for Power Switching Devices [J].
Ishida, Masahiro ;
Ueda, Tetsuzo ;
Tanaka, Tsuyoshi ;
Ueda, Daisuke .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2013, 60 (10) :3053-3059
[6]   Al2O3/AlN/GaN MOS-Channel-HEMTs With an AlN Interfacial Layer [J].
Liu, Shenghou ;
Yang, Shu ;
Tang, Zhikai ;
Jiang, Qimeng ;
Liu, Cheng ;
Wang, Maojun ;
Chen, Kevin J. .
IEEE ELECTRON DEVICE LETTERS, 2014, 35 (07) :723-725
[7]   Effect of Buffer Layer Structure on Drain Leakage Current and Current Collapse Phenomena in High-Voltage GaN-HEMTs [J].
Saito, Wataru ;
Noda, Takao ;
Kuraguchi, Masahiko ;
Takada, Yoshiharu ;
Tsuda, Kunio ;
Saito, Yasunobu ;
Yamaguchi, Masakazu ;
Omura, Ichiro .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2009, 56 (07) :1371-1376
[8]   Breakdown Enhancement of AlGaN/GaN HEMTs on 4-in Silicon by Improving the GaN Quality on Thick Buffer Layers [J].
Selvaraj, Susai Lawrence ;
Suzue, Takaaki ;
Egawa, Takashi .
IEEE ELECTRON DEVICE LETTERS, 2009, 30 (06) :587-589
[9]   600-V Normally Off SiNx/AlGaN/GaN MIS-HEMT With Large Gate Swing and Low Current Collapse [J].
Tang, Zhikai ;
Jiang, Qimeng ;
Lu, Yunyou ;
Huang, Sen ;
Yang, Shu ;
Tang, Xi ;
Chen, Kevin J. .
IEEE ELECTRON DEVICE LETTERS, 2013, 34 (11) :1373-1375
[10]   Intentionally Carbon-Doped AlGaN/GaN HEMTs: Necessity for Vertical Leakage Paths [J].
Uren, Michael J. ;
Silvestri, Marco ;
Caesar, Markus ;
Hurkx, Godefridus Adrianus Maria ;
Croon, Jeroen A. ;
Sonsky, Jan ;
Kuball, Martin .
IEEE ELECTRON DEVICE LETTERS, 2014, 35 (03) :327-329