Oligodendrocytes regulate formation of nodes of Ranvier via the recognition molecule OMgp

被引:22
作者
Nie, Du-Yu
Ma, Quan-Hong
Law, Janice W. S.
Chia, Chern-Pang
Dhingra, Narender K.
Shimoda, Yasushi
Yang, Wu-Lin
Gong, Neng
Chen, Qing-Wen
Xu, Gang
Hu, Qi-Dong
Chow, Pierce K. H.
Ng, Yee-Kong
Ling, Eng-Ang
Watanabe, Kazutada
Xu, Tian-Le
Habib, Amyn A.
Schachner, Melitta
Xiao, Zhi-Cheng
机构
[1] Singapore Gen Hosp, Dept Clin Res, Neurobiol Lab, Singapore 169608, Singapore
[2] Natl Univ Singapore, Inst Mol & Cell Biol, Singapore 117548, Singapore
[3] Natl Univ Singapore, Dept Anat, Singapore 117548, Singapore
[4] Dalian Med Univ, Sino Germany Ctr Neurosci, Dalian, Peoples R China
[5] Nagaoka Univ Technol, Dept Bioengn, Nagaoka, Niigata 94021, Japan
[6] Inst Neurosci, Shanghai, Peoples R China
[7] Natl Inst Neurosci, Singapore, Singapore
[8] Singapore Gen Hosp, Dept Expt Surg, Singapore 169608, Singapore
[9] Univ Texas, SW Med Ctr, Dept Neurol, Dallas, TX 75235 USA
[10] Univ Hamburg, Zentrum Mol Neurobiol, Hamburg, Germany
关键词
OMgp; myelination; node of Ranvier; oligodendrocyte; Na+ channel;
D O I
10.1017/S1740925X06000251
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The molecular mechanisms underlying the involvement of oligodendrocytes information of the nodes of Ranvier (NORs) remain poorly understood. Here we show that oligodendrocyte-myelin glycoprotein (OMgp) aggregates specifically at NORs. Nodal location of OMgp does not occur along demyelinated axons of either Shiverer orproteolipidprotcin (PLP) transgenic mice. Overexpression of OMgp in OLN-(93) cells facilitates process outgrowth. In transgenic mice in which expression of OMgp is downregulated, myelin thickness declines, and lateral oligodendrocyte loops at the node-paranode junction are less compacted and even join together with the opposite loops, which leads to shortened nodal gaps. Notably, each of these structural abnormalities plus modest down-regulation of expression of Na+ channel a subunit result in reduced conduction velocity in the spinal cords of the mutant mice. Thus, OMgp that is derived from glia has distinct roles in regulating nodal formation and function during CNS myelination.
引用
收藏
页码:151 / 164
页数:14
相关论文
共 51 条
[11]   A SOLUBLE FORM OF THE F3 NEURONAL CELL-ADHESION MOLECULE PROMOTES NEURITE OUTGROWTH [J].
DURBEC, P ;
GENNARINI, G ;
GORIDIS, C ;
ROUGON, G .
JOURNAL OF CELL BIOLOGY, 1992, 117 (04) :877-887
[12]  
Evers MR, 2002, J NEUROSCI, V22, P7177
[13]   Development of nodes of Ranvier [J].
Girault, JA ;
Peles, E .
CURRENT OPINION IN NEUROBIOLOGY, 2002, 12 (05) :476-485
[14]  
Habib AA, 1998, J NEUROCHEM, V70, P1704
[15]   MYELINATED NERVE-FIBERS IN THE CNS [J].
HILDEBRAND, C ;
REMAHL, S ;
PERSSON, H ;
BJARTMAR, C .
PROGRESS IN NEUROBIOLOGY, 1993, 40 (03) :319-384
[16]   A QUANTITATIVE DESCRIPTION OF MEMBRANE CURRENT AND ITS APPLICATION TO CONDUCTION AND EXCITATION IN NERVE [J].
HODGKIN, AL ;
HUXLEY, AF .
JOURNAL OF PHYSIOLOGY-LONDON, 1952, 117 (04) :500-544
[17]   F3/contactin acts as a functional ligand for notch during oligodendrocyte maturation [J].
Hu, QD ;
Ang, BT ;
Karsak, M ;
Hu, WP ;
Cui, XY ;
Duka, T ;
Takeda, Y ;
Chia, W ;
Sankar, N ;
Ng, YK ;
Ling, EA ;
Maciag, T ;
Small, D ;
Trifonova, R ;
Kopan, R ;
Okano, H ;
Nakafuku, M ;
Chiba, S ;
Hirai, H ;
Aster, JC ;
Schachner, M ;
Pallen, CJ ;
Watanabe, K ;
Xiao, ZC .
CELL, 2003, 115 (02) :163-175
[18]   Glial membranes at the node of Ranvier prevent neurite outgrowth [J].
Huang, JK ;
Phillips, GR ;
Roth, AD ;
Pedraza, L ;
Shan, WS ;
Belkaid, W ;
Mi, S ;
Fex-Svenningsen, A ;
Florens, L ;
Yates, JR ;
Colman, DR .
SCIENCE, 2005, 310 (5755) :1813-1817
[19]   RECOMBINANT MYELIN-ASSOCIATED GLYCOPROTEIN CONFERS NEURAL ADHESION AND NEURITE OUTGROWTH FUNCTION [J].
JOHNSON, PW ;
ABRAMOWNEWERLY, W ;
SEILHEIMER, B ;
SADOUL, R ;
TROPAK, MB ;
ARQUINT, M ;
DUNN, RJ ;
SCHACHNER, M ;
RODER, JC .
NEURON, 1989, 3 (03) :377-385
[20]   Induction of sodium channel clustering by oligodendrocytes [J].
Kaplan, MR ;
MeyerFranke, A ;
Lamber, S ;
Bennett, V ;
Duncan, ID ;
Levinson, SR ;
Barres, BA .
NATURE, 1997, 386 (6626) :724-728