Unpaired many-to-many vertex-disjoint path covers of a class of bipartite graphs

被引:15
作者
Chen, Xie-Bin [1 ]
机构
[1] Zhangzhou Teachers Coll, Dept Math & Informat Sci, Zhangzhou 363000, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Hypercube; Vertex-disjoint paths; Hamiltonian path; Matching; Folded hypercube; Interconnection network; FAULTY HYPERCUBES; PARTITIONS; NETWORKS; ELEMENTS; CYCLES;
D O I
10.1016/j.ipl.2009.12.004
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let W(n) denote any bipartite graph obtained by adding some edges to the n-dimensional hypercube Q(n) and let S and T be any two sets of k vertices in different partite sets of W(n) In this paper, we show that the graph W(n) has k vertex-disjoint (S, T)-paths containing all vertices of W(n) if and only if k = 2(n-1) or the graph W(n) - (S boolean OR T) has a perfect matching. Moreover, if the graph W(n) - (S boolean OR T) has a perfect matching M, then tile graph W(n) has k vertex-disjoint (S. T)-paths containing all vertices of W(n) and all edges in M. And some corollaries are given. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:203 / 205
页数:3
相关论文
共 15 条
[1]  
Bondy J.A., 1980, Graph Theory with Applications
[2]   Spanning multi-paths in hypercubes [J].
Caha, Rostislav ;
Koubek, Vaclav .
DISCRETE MATHEMATICS, 2007, 307 (16) :2053-2066
[3]   Many-to-many disjoint paths in faulty hypercubes [J].
Chen, Xie-Bin .
INFORMATION SCIENCES, 2009, 179 (18) :3110-3115
[4]   Hamiltonian cycles with prescribed edges in hypercubes [J].
Dvorák, T .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2005, 19 (01) :135-144
[5]   PARTITIONS OF FAULTY HYPERCUBES INTO PATHS WITH PRESCRIBED ENDVERTICES [J].
Dvorak, Tomas ;
Gregor, Petr .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2008, 22 (04) :1448-1461
[6]   PROPERTIES AND PERFORMANCE OF FOLDED HYPERCUBES [J].
ELAMAWY, A ;
LATIFI, S .
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 1991, 2 (01) :31-42
[7]   Perfect matchings extend to Hamilton cycles in hypercubes [J].
Fink, Jiri .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (06) :1074-1076
[8]   Path partitions of hypercubes [J].
Gregor, Petr ;
Dvorak, Tomas .
INFORMATION PROCESSING LETTERS, 2008, 108 (06) :402-406
[9]   A SURVEY OF THE THEORY OF HYPERCUBE GRAPHS [J].
HARARY, F ;
HAYES, JP ;
WU, HJ .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1988, 15 (04) :277-289
[10]  
Jung-Heum Park, 2006, Journal of KISS: Computer Systems and Theory, V33, P789