Radiation therapy primes tumors for nanotherapeutic delivery via macrophage-mediated vascular bursts

被引:191
作者
Miller, Miles A. [1 ,2 ]
Chandra, Ravi [1 ,3 ]
Cuccarese, Michael F. [1 ]
Pfirschke, Christina [1 ]
Engblom, Camilla [1 ]
Stapleton, Shawn [1 ]
Adhikary, Utsarga [1 ]
Kohler, Rainer H. [1 ]
Mohan, James F. [1 ]
Pittet, Mikael J. [1 ,2 ]
Weissleder, Ralph [1 ,2 ,4 ]
机构
[1] Massachusetts Gen Hosp, Ctr Syst Biol, 185 Cambridge St,CPZN 5206, Boston, MA 02114 USA
[2] Massachusetts Gen Hosp, Dept Radiol, 55 Fruit St, Boston, MA 02114 USA
[3] Harvard Radiat Oncol Program, 55 Fruit St, Boston, MA 02114 USA
[4] Harvard Med Sch, Dept Syst Biol, 200 Longwood Ave, Boston, MA 02115 USA
关键词
PEGYLATED LIPOSOMAL DOXORUBICIN; DRUG-DELIVERY; PHASE-I; PERMEABILITY; PATHWAY; CELLS; ANGIOGENESIS; VESSELS; TISSUE;
D O I
10.1126/scitranslmed.aal0225
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Efficient delivery of therapeutic nanoparticles (TNPs) to tumors is critical in improving efficacy, yet strategies that universally maximize tumoral targeting by TNP modification have been difficult to achieve in the clinic. Instead of focusing on TNP optimization, we show that the tumor microenvironment itself can be therapeutically primed to facilitate accumulation of multiple clinically relevant TNPs. Building on the recent finding that tumor-associated macrophages (TAM) can serve as nanoparticle drug depots, we demonstrate that local tumor irradiation substantially increases TAM relative to tumor cells and, thus, TNP delivery. High-resolution intravital imaging reveals that after radiation, TAM primarily accumulate adjacent to microvasculature, elicit dynamic bursts of extravasation, and subsequently enhance drug uptake in neighboring tumor cells. TAM depletion eliminates otherwise beneficial radiation effects on TNP accumulation and efficacy, and controls with unencapsulated drug show that radiation effects are more pronounced with TNPs. Priming with combined radiation and cyclophosphamide enhances vascular bursting and tumoral TNP concentration, in some cases leading to a sixfold increase of TNP accumulation in the tumor, reaching 6% of the injected dose per gram of tissue. Radiation therapy alters tumors for enhanced TNP delivery in a TAM-dependent fashion, and these observations have implications for the design of next-generation tumor-targeted nanomaterials and clinical trials for adjuvant strategies.
引用
收藏
页数:12
相关论文
共 40 条
[11]   Real-Time Imaging Reveals Local, Transient Vascular Permeability, and Tumor Cell Intravasation Stimulated by TIE2hi Macrophage-Derived VEGFA [J].
Harney, Allison S. ;
Arwert, Esther N. ;
Entenberg, David ;
Wang, Yarong ;
Guo, Peng ;
Qian, Bin-Zhi ;
Oktay, Maja H. ;
Pollard, Jeffrey W. ;
Jones, Joan G. ;
Condeelis, John S. .
CANCER DISCOVERY, 2015, 5 (09) :932-943
[12]   Tumor recovery by angiogenic switch from sprouting to intussusceptive angiogenesis after treatment with PTK787/ZK222584 or ionizing radiation [J].
Hlushchuk, Ruslan ;
Riesterer, Oliver ;
Baum, Oliver ;
Wood, Jeanette ;
Gruber, Guenther ;
Pruschy, Martin ;
Djonov, Valentin .
AMERICAN JOURNAL OF PATHOLOGY, 2008, 173 (04) :1173-1185
[13]   FAS Death Receptor: A Breast Cancer Subtype-Specific Radiation Response Biomarker and Potential Therapeutic Target [J].
Horton, Janet K. ;
Siamakpour-Reihani, Sharareh ;
Lee, Chen-Ting ;
Zhou, Ying ;
Chen, Wei ;
Geradts, Joseph ;
Fels, Diane R. ;
Hoang, Peter ;
Ashcraft, Kathleen A. ;
Groth, Jeff ;
Kung, Hsiu-Ni ;
Dewhirst, Mark W. ;
Chi, Jen-Tsan A. .
RADIATION RESEARCH, 2015, 184 (05) :456-469
[14]   The radiation-induced cell-death signaling pathway is activated by concurrent use of cisplatin in sequential biopsy specimens from patients with cervical cancer [J].
Iwakawa, Mayumi ;
Ohno, Tatsuya ;
Imadome, Kaori ;
Nakawatari, Miyako ;
Ishikawal, Ken-ichi ;
Sakai, Minako ;
Katoh, Shingo ;
Ishikawa, Hitoshi ;
Tsujii, Hirohiko ;
Imai, Takashi .
CANCER BIOLOGY & THERAPY, 2007, 6 (06) :905-911
[15]  
JAIN RK, 1988, CANCER RES, V48, P2641
[16]   Preclinical Activity of Nanoliposomal Irinotecan Is Governed by Tumor Deposition and Intratumor Prodrug Conversion [J].
Kalra, Ashish V. ;
Kim, Jaeyeon ;
Klinz, Stephan G. ;
Paz, Nancy ;
Cain, Jason ;
Drummond, Daryl C. ;
Nielsen, Ulrik B. ;
Fitzgerald, Jonathan B. .
CANCER RESEARCH, 2014, 74 (23) :7003-7013
[17]   Low-Dose Irradiation Programs Macrophage Differentiation to an iNOS+/M1 Phenotype that Orchestrates Effective T Cell Immunotherapy [J].
Klug, Felix ;
Prakash, Hridayesh ;
Huber, Peter E. ;
Seibel, Tobias ;
Bender, Noemi ;
Halama, Niels ;
Pfirschke, Christina ;
Voss, Ralf Holger ;
Timke, Carmen ;
Urnansky, Ludmila ;
Klapproth, Kay ;
Schaekel, Knut ;
Garbi, Natalio ;
Jaeger, Dirk ;
Weitz, Juergen ;
Schmitz-Winnenthal, Hubertus ;
Haemmerling, Guenter J. ;
Beckhove, Philipp .
CANCER CELL, 2013, 24 (05) :589-602
[18]   Recruitment of Myeloid but not Endothelial Precursor Cells Facilitates Tumor Regrowth after Local Irradiation [J].
Kozin, Sergey V. ;
Kamoun, Walid S. ;
Huang, Yuhui ;
Dawson, Michelle R. ;
Jain, Rakesh K. ;
Duda, Dan G. .
CANCER RESEARCH, 2010, 70 (14) :5679-5685
[19]   A phase I study of MM-302, a HER2-targeted PEGylated liposomal doxorubicin, in patients with HER2+metastatic breast cancer [J].
LoRusso, Patricia ;
Krop, Ian ;
Miller, Kathy ;
Ma, Cynthia ;
Siegel, Barry A. ;
Shields, Anthony F. ;
Molnar, Istvan ;
Wickham, Thomas ;
Reynolds, Joseph ;
Campbell, Karen ;
Hendriks, Bart ;
McClure, Ty ;
Moyo, Victor ;
Munster, Pamela .
CANCER RESEARCH, 2015, 75
[20]  
Matsumoto Y, 2016, NAT NANOTECHNOL, V11, P533, DOI [10.1038/nnano.2015.342, 10.1038/NNANO.2015.342]