Zinc Oxide/Manganese Oxide hybrid nanostructure for electrode and asymmetric supercapacitor with long-term cyclic life

被引:21
作者
Yang, Ming [1 ]
Li, Kaifeng [1 ]
Xiao, Li [1 ]
机构
[1] Shenyang Univ Technol, Sch Mat Sci & Engn, Shenyang 110870, Peoples R China
来源
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS | 2021年 / 269卷
关键词
ZnO/MnO2; Hybrid nanostructure; Electrochemical performance; Supercapacitor; HIGH-PERFORMANCE; NI FOAM; ARRAYS; CARBON; NANOSHEETS;
D O I
10.1016/j.mseb.2021.115173
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
ZnO/MnO2 hybrid nanostructure for electrode and asymmetric supercapacitor is fabricated and electrochemical performance of the as-prepared active material is investigated in this paper. The as-synthesized electrode material possesses a wheel-like shape composed of the nanosheets and nanoparticles. This ZnO/MnO2 electrode with 3-electrode measurement and the assembled supercapacitor show maximum area capacitance of 271.1 mF cm(-2) and 376.7 mF cm(-2) at current densities of 2 mA cm(-2), respectively, as well as energy density of 109.8 mWh cm(-2) and 610.2 mWh cm(-2), power density of 3240 mW cm(-2) and 6480 mW cm(-2), respectively. Moreover, the as-prepared electrode material has a long-term cyclic life and stability (95% after 50,000 cycles) and the assembled supercapacitor possesses 97% retention after 10,000 cycles, respectively. Excellent electrochemical performance of the as-fabricated hybrid nanostructure could be contributed to the unique hybrid nanostructure and good pseudocapacitance of MnO2.
引用
收藏
页数:7
相关论文
共 35 条
[1]  
Abdah M.A.A.M, 2020, MAT DES, V186, P108
[2]   Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor [J].
Brousse, Thierry ;
Taberna, Pierre-Louis ;
Crosnier, Olivier ;
Dugas, Romain ;
Guillemet, Philippe ;
Scudeller, Yves ;
Zhou, Yingke ;
Favier, Frederic ;
Belanger, Daniel ;
Simon, Patrice .
JOURNAL OF POWER SOURCES, 2007, 173 (01) :633-641
[3]   Synthesis of NiO@MnO2 core/shell nanocomposites for supercapacitor application [J].
Chen, Junjiao ;
Huang, Ying ;
Li, Chao ;
Chen, Xuefang ;
Zhang, Xiang .
APPLIED SURFACE SCIENCE, 2016, 360 :534-539
[4]   Electrochemical capacitors utilising transition metal oxides: an update of recent developments [J].
Deng, Wentao ;
Ji, Xiaobo ;
Chen, Qiyuan ;
Banks, Craig E. .
RSC ADVANCES, 2011, 1 (07) :1171-1178
[5]   Biological cell template synthesis of nitrogen-doped porous hollow carbon spheres/MnO2 composites for high-performance asymmetric supercapacitors [J].
Du, Wei ;
Wang, Xiaoning ;
Zhan, Jie ;
Sun, Xueqin ;
Kang, Litao ;
Jiang, Fuyi ;
Zhang, Xiaoyu ;
Shao, Qian ;
Dong, Mengyao ;
Liu, Hu ;
Murugadoss, Vignesh ;
Guo, Zhanhu .
ELECTROCHIMICA ACTA, 2019, 296 :907-915
[6]  
Frackowiak EdE., 2013, Supercapacitors: Materials, Systems and Applications
[7]  
Hamann C. H., 2007, ELECTROCHEMISTRY, V2nd
[8]   Hierarchical ZnO@MnO2 Core-Shell Pillar Arrays on Ni Foam for Binder-Free Supercapacitor Electrodes [J].
Huang, Ming ;
Li, Fei ;
Zhao, Xiao Li ;
Luo, Da ;
You, Xue Qiu ;
Zhang, Yu Xin ;
Li, Gang .
ELECTROCHIMICA ACTA, 2015, 152 :172-177
[9]   High-performance flexible supercapacitors based on mesoporous carbon nanofibers/Co3O4/MnO2 hybrid electrodes [J].
Huang, Yunpeng ;
Miao, Yue-E ;
Tjiu, Weng Weei ;
Liu, Tianxi .
RSC ADVANCES, 2015, 5 (24) :18952-18959
[10]   High-Performance 2.6 V Aqueous Asymmetric Supercapacitors based on In Situ Formed Na0.5MnO2 Nanosheet Assembled Nanowall Arrays [J].
Jabeen, Nawishta ;
Hussain, Ahmad ;
Xia, Qiuying ;
Sun, Shuo ;
Zhu, Junwu ;
Xia, Hui .
ADVANCED MATERIALS, 2017, 29 (32)