An accurate parallel block Gram-Schmidt algorithm without reorthogonalization

被引:0
作者
Vanderstraeten, D [1 ]
机构
[1] Katholieke Univ Leuven, Dept Comp Sci, B-3001 Heverlee, Belgium
关键词
Gram-Schmidt orthogonalization; block; numerical reliability; parallelism;
D O I
10.1002/1099-1506(200005)7:4<219::AID-NLA196>3.0.CO;2-L
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The modified Gram-Schmidt (MGS) orthogonalization process-used for example in the Arnoldi algorithm-often constitutes the bottleneck that Limits parallel efficiencies. Indeed, a number of communications, proportional to the square of the problem size, are required to compute the dot-products. A block formulation is attractive but it suffers from potential numerical instability. In this paper, we address this issue and propose a simple procedure that allows the use of a block Gram-Schmidt algorithm while guaranteeing a numerical accuracy close to that of MGS. The main idea is to determine the size of the blocks dynamically. The main advantages of this dynamic procedure are two-fold: first, high performance matrix-vector multiplications can be used to decrease the execution time. Next, in a parallel environment, the number of communications is reduced. Performance comparisons with the alternative Iterated CGS also show an improvement for a moderate number of processors. Copyright (C) 2000 John Wiley & Sons, Ltd.
引用
收藏
页码:219 / 236
页数:18
相关论文
共 18 条
[1]  
Abdelmalek N. N., 1971, BIT (Nordisk Tidskrift for Informationsbehandling), V11, P345, DOI 10.1007/BF01939404
[2]   INCREMENTAL CONDITION ESTIMATION [J].
BISCHOF, CH .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1990, 11 (02) :312-322
[3]  
BJORCK A, 1992, SIAM J MATRIX ANAL A, V13, P176
[4]  
BJORCK A, 1996, NUMERICAL METHODS LE
[5]  
Bjorck A., 1967, BIT, V7, P1, DOI DOI 10.1007/BF01934122
[6]   REORTHOGONALIZATION AND STABLE ALGORITHMS FOR UPDATING GRAM-SCHMIDT QR FACTORIZATION [J].
DANIEL, JW ;
GRAGG, WB ;
KAUFMAN, L ;
STEWART, GW .
MATHEMATICS OF COMPUTATION, 1976, 30 (136) :772-795
[7]   NUMERICAL STABILITY OF GMRES [J].
DRKOSOVA, J ;
GREENBAUM, A ;
ROZLOZNIK, M ;
STRAKOS, Z .
BIT, 1995, 35 (03) :309-330
[8]  
Golub G.H., 2013, MATRIX COMPUTATIONS
[9]   Numerical behaviour of the modified Gram-Schmidt GMRES implementation [J].
Greenbaum, A ;
Rozloznik, M ;
Strakos, Z .
BIT, 1997, 37 (03) :706-719
[10]   A SURVEY OF CONDITION NUMBER ESTIMATION FOR TRIANGULAR MATRICES [J].
HIGHAM, NJ .
SIAM REVIEW, 1987, 29 (04) :575-596