Personalised Modelling on Integrated Clinical and EEG Spatio-Temporal Brain Data in the NeuCube Spiking Neural Network System

被引:0
|
作者
Doborjeh, Maryam Gholami [1 ]
Kasabov, Nikola [1 ]
机构
[1] Auckland Univ Technol, Knowledge Engn & Discovery Res Inst, Auckland 1010, New Zealand
来源
2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2016年
关键词
personalised modelling; spiking neural networks; NeuCube; spatiotemporal data; EEG data; opiate addict; methadone maintenance treatment;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a novel personalised modelling framework and system for analysing Spatio-Temporal Brain Data (STBD) along with person clinical static data. For every individual, based on selected subset of similar to this individual clinical data, a subset of STBD is used for training a personalised Spiking Neural Network (PSNN) model using the recently proposed NeuCube SNN architecture. The proposed method is illustrated on a case study of personalised modelling using clinical and EEG data of two groups of subjects - drug addicts and addicts under medication. The PSNN models help to achieve a better classification accuracy compared to global SNN models or when using traditional AI methods. A PSNN model visualisation enables discovery of new knowledge about individual persons and to distinguish complex STBD across subjects.
引用
收藏
页码:1373 / 1378
页数:6
相关论文
共 31 条
  • [21] Reservoir-Based Evolving Spiking Neural Network for Spatio-temporal Pattern Recognition
    Schliebs, Stefan
    Hamed, Haza Nuzly Abdull
    Kasabov, Nikola
    NEURAL INFORMATION PROCESSING, PT II, 2011, 7063 : 160 - 168
  • [22] Brain-Inspired Spatio-Temporal Associative Memories for Neuroimaging Data Classification: EEG and fMRI
    Kasabov, Nikola K.
    Bahrami, Helena
    Doborjeh, Maryam
    Wang, Alan
    Zhang, Nanyin
    Boubchir, Larbi
    BIOENGINEERING-BASEL, 2023, 10 (12):
  • [23] EEG-Based Spatio-Temporal Convolutional Neural Network for Driver Fatigue Evaluation
    Gao, Zhongke
    Wang, Xinmin
    Yang, Yuxuan
    Mu, Chaoxu
    Cai, Qing
    Dang, Weidong
    Zuo, Siyang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2019, 30 (09) : 2755 - 2763
  • [24] Emotion Recognition and Understanding Using EEG Data in A Brain-Inspired Spiking Neural Network Architecture
    Alzhrani, Wael
    Doborjeh, Maryam
    Doborjeh, Zohreh
    Kasabov, Nikola
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [25] Personalised predictive modelling with brain-inspired spiking neural networks of longitudinal MRI neuroimaging data and the case study of dementia
    Doborjeh, Maryam
    Doborjeh, Zohreh
    Merkin, Alexander
    Bahrami, Helena
    Sumich, Alexander
    Krishnamurthi, Rita
    Medvedev, Oleg N.
    Crook-Rumsey, Mark
    Morgan, Catherine
    Kirk, Ian
    Sachdev, Perminder S.
    Brodaty, Henry
    Kang, Kristan
    Wen, Wei
    Feigin, Valery
    Kasabov, Nikola
    NEURAL NETWORKS, 2021, 144 : 522 - 539
  • [26] A Spiking Neural Network Methodology and System for Learning and Comparative Analysis of EEG Data From Healthy Versus Addiction Treated Versus Addiction Not Treated Subjects
    Doborjeh, Maryam Gholami
    Wang, Grace Y.
    Kasabov, Nikola K.
    Kydd, Robert
    Russell, Bruce
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2016, 63 (09) : 1830 - 1841
  • [27] Framework for Knowledge Driven Optimisation Based Data Encoding for Brain Data Modelling Using Spiking Neural Network Architecture
    Sengupta, Neelava
    Scott, Nathan
    Kasabov, Nikola
    PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON FUZZY AND NEURO COMPUTING (FANCCO - 2015), 2015, 415 : 109 - 118
  • [28] Bus Arrival Time Prediction Using a Modified Amalgamation of Fuzzy Clustering and Neural Network on Spatio-Temporal Data
    Khetarpaul, Sonia
    Gupta, S. K.
    Malhotra, Shikhar
    Subramaniam, L. Venkata
    DATABASES THEORY AND APPLICATIONS, 2015, 9093 : 142 - 154
  • [29] Direct training of hardware-friendly weight binarized spiking neural network with surrogate gradient learning towards spatio-temporal event-based dynamic data recognition
    Qiao, G. C.
    Ning, N.
    Zuo, Y.
    Hu, S. G.
    Yu, Q.
    Liu, Y.
    NEUROCOMPUTING, 2021, 457 (457) : 203 - 213
  • [30] Graph-based neural network model for predicting urban environmental air quality using spatio-temporal data optimization
    Yogapriya, J.
    Deepa, S.
    Radha, N.
    Madhumitha, E.
    GLOBAL NEST JOURNAL, 2024, 26 (02):