Personalised Modelling on Integrated Clinical and EEG Spatio-Temporal Brain Data in the NeuCube Spiking Neural Network System

被引:0
|
作者
Doborjeh, Maryam Gholami [1 ]
Kasabov, Nikola [1 ]
机构
[1] Auckland Univ Technol, Knowledge Engn & Discovery Res Inst, Auckland 1010, New Zealand
来源
2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2016年
关键词
personalised modelling; spiking neural networks; NeuCube; spatiotemporal data; EEG data; opiate addict; methadone maintenance treatment;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a novel personalised modelling framework and system for analysing Spatio-Temporal Brain Data (STBD) along with person clinical static data. For every individual, based on selected subset of similar to this individual clinical data, a subset of STBD is used for training a personalised Spiking Neural Network (PSNN) model using the recently proposed NeuCube SNN architecture. The proposed method is illustrated on a case study of personalised modelling using clinical and EEG data of two groups of subjects - drug addicts and addicts under medication. The PSNN models help to achieve a better classification accuracy compared to global SNN models or when using traditional AI methods. A PSNN model visualisation enables discovery of new knowledge about individual persons and to distinguish complex STBD across subjects.
引用
收藏
页码:1373 / 1378
页数:6
相关论文
共 31 条
  • [1] NeuCube: A spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data
    Kasabov, Nikola K.
    NEURAL NETWORKS, 2014, 52 : 62 - 76
  • [2] Classification and Segmentation of fMRI Spatio-Temporal Brain Data with a NeuCube Evolving Spiking Neural Network Model
    Doborjeh, Maryam Gholami
    Capecci, Elisa
    Kasabov, Nikola
    2014 IEEE SYMPOSIUM ON EVOLVING AND AUTONOMOUS LEARNING SYSTEMS (EALS), 2014, : 73 - 80
  • [3] Spiking neural network methodology for modelling, classification and understanding of EEG spatio-temporal data measuring cognitive processes
    Kasabov, Nikola
    Capecci, Elisa
    INFORMATION SCIENCES, 2015, 294 : 565 - 575
  • [4] Transfer Learning of Fuzzy Spatio-Temporal Rules in a Brain-Inspired Spiking Neural Network Architecture: A Case Study on Spatio-Temporal Brain Data
    Kasabov, Nikola K.
    Tan, Yongyao
    Doborjeh, Maryam
    Tu, Enmei
    Yang, Jie
    Goh, Wilson
    Lee, Jimmy
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2023, 31 (12) : 4542 - 4552
  • [5] A feasibility study of using the neucube spiking neural network architecture for modelling Alzheimer’s disease EEG data
    20152400933645
    Capecci, Elisa, 2015, Springer Science and Business Media Deutschland GmbH (37): : 159 - 172
  • [6] Evolving spiking neural networks for personalised modelling, classification and prediction of spatio-temporal patterns with a case study on stroke
    Kasabov, Nikola
    Feigin, Valery
    Hou, Zeng-Guang
    Chen, Yixiong
    Liang, Linda
    Krishnamurthi, Rita
    Othman, Muhaini
    Parmar, Priya
    NEUROCOMPUTING, 2014, 134 : 269 - 279
  • [7] Attentional Bias Pattern Recognition in Spiking Neural Networks from Spatio-Temporal EEG Data
    Doborjeh, Zohreh Gholami
    Doborjeh, Maryam G.
    Kasabov, Nikola
    COGNITIVE COMPUTATION, 2018, 10 (01) : 35 - 48
  • [8] Attentional Bias Pattern Recognition in Spiking Neural Networks from Spatio-Temporal EEG Data
    Zohreh Gholami Doborjeh
    Maryam G. Doborjeh
    Nikola Kasabov
    Cognitive Computation, 2018, 10 : 35 - 48
  • [9] Efficient Recognition of Attentional Bias Using EEG Data and the NeuCube Evolving Spatio-Temporal Data Machine
    Doborjeh, Zohreh Gholami
    Doborjeh, Maryam Gholami
    Kasabov, Nikola
    NEURAL INFORMATION PROCESSING, ICONIP 2016, PT IV, 2016, 9950 : 645 - 653
  • [10] Modelling Absence Epilepsy Seizure Data in the NeuCube Evolving Spiking Neural Network Architecture
    Capecci, Elisa
    Espinosa-Ramos, Josafath I.
    Mammone, Nadia
    Kasabov, Nikola
    Duun-Henriksen, Jonas
    Kjaer, Troels Wesenberg
    Campolo, Maurizio
    La Foresta, Fabio
    Morabito, Francesco C.
    2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,