A new kind of blowing-up solutions for the Brezis-Nirenberg problem

被引:7
作者
Vaira, Giusi [1 ]
机构
[1] Dipartimento Sci Base & Applicate Ingn, Sez Matemat, I-00185 Rome, Italy
关键词
CRITICAL SOBOLEV EXPONENT; SIGN-CHANGING SOLUTIONS; SUPERCRITICAL NONLINEAR PROBLEM; ELLIPTIC-EQUATIONS; CRITICAL GROWTH; NODAL SOLUTIONS; DIMENSION; NONEXISTENCE; EXISTENCE; DOMAIN;
D O I
10.1007/s00526-014-0716-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Brezis-Nirenberg problem in a bounded domain with nontrivial topology and smooth boundary and we prove the existence of a new type of positive and sign-changing solution in a "subcritical" and in a "supercritical" setting. We remark that this is the first result of existence of a sign-changing solution in "the supercritical" case.
引用
收藏
页码:389 / 422
页数:34
相关论文
共 50 条
[31]   The second bifurcation branch for radial solutions of the Brezis-Nirenberg problem in dimension four [J].
Arioli, Gianni ;
Gazzola, Filippo ;
Grunau, Hans-Christoph ;
Sassone, Edoardo .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2008, 15 (1-2) :69-90
[32]   CRITICAL BREZIS-NIRENBERG PROBLEM FOR NONLOCAL SYSTEMS [J].
Faria, Luiz F. O. ;
Miyagaki, Olimpio H. ;
Pereira, Fabio R. .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2017, 50 (01) :333-355
[33]   Blow-up and nonexistence of sign changing solutions to the Brezis-Nirenberg problem in dimension three [J].
Ben Ayed, Mohamed ;
El Mehdi, Khalil ;
Pacella, Filomena .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (04) :567-589
[34]   LEAST ENERGY NODAL SOLUTIONS OF THE BREZIS-NIRENBERG PROBLEM IN DIMENSION N=5 [J].
Roselli, Paolo ;
Willem, Michel .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2009, 11 (01) :59-69
[35]   Spectral estimates of least energy solutions to the Brezis-Nirenberg problem with a variable coefficient [J].
Takahashi, Futoshi .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (10) :2497-2527
[36]   On the Location of Blow up Points of Least Energy Solutions to the Brezis-Nirenberg Equation [J].
Takahashi, Futoshi .
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2004, 47 (01) :145-166
[37]   Non-degeneracy of themulti-bump solutions to the Brezis-Nirenberg problem [J].
Chen, Haixia ;
Wang, Chunhua ;
Xie, Huafei ;
Zhou, Yang .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2024, 203 (03) :1115-1136
[38]   The Brezis-Nirenberg problem for the curl-curl operator [J].
Mederski, Jaroslaw .
JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 274 (05) :1345-1380
[39]   Asymptotic analysis for radial sign-changing solutions of the Brezis-Nirenberg problem in low dimensions [J].
Iacopetti, Alessandro ;
Pacella, Filomena .
CONTRIBUTIONS TO NONLINEAR ELLIPTIC EQUATIONS AND SYSTEMS, 2015, 86 :325-343
[40]   The Brezis-Nirenberg problem for fractional systems with Hardy potentials [J].
Shen, Yansheng .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (03) :1341-1358