Splittings of free groups, normal forms and partitions of ends

被引:3
作者
Gadgil, Siddhartha [1 ]
Pandit, Suhas [2 ]
机构
[1] Indian Inst Sci, Dept Math, Bangalore 560012, Karnataka, India
[2] Indian Inst Sci Educ & Res, Dept Math, Pune 411021, Maharashtra, India
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 2010年 / 120卷 / 02期
关键词
Free groups; sphere complex; algebraic intersection numbers; graphs of trees; GEOMETRIC INTERSECTION-NUMBERS; AUTOMORPHISM-GROUPS; COMPLEX; SURFACES; CURVES; DIMENSION; STABILITY; OUT(F-N); HOMOLOGY; TREES;
D O I
10.1007/s12044-010-0020-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Splittings of a free group correspond to embedded spheres in the 3-manifold M = # (k) S (2) x S (1). These can be represented in a normal form due to Hatcher. In this paper, we determine the normal form in terms of crossings of partitions of ends corresponding to normal spheres, using a graph of trees representation for normal forms. In particular, we give a constructive proof of a criterion determining when a conjugacy class in pi (2)(M) can be represented by an embedded sphere.
引用
收藏
页码:217 / 241
页数:25
相关论文
共 31 条
[1]  
[Anonymous], 2001, ALGEBRAIC TOPOLOGY
[2]   The Tits alternative for out(Fn) I:: Dynamics of exponentially-growing automorphisms [J].
Bestvina, M ;
Feighn, M ;
Handel, M .
ANNALS OF MATHEMATICS, 2000, 151 (02) :517-623
[3]   The topology at infinity of Out(Fn) [J].
Bestvina, M ;
Feighn, M .
INVENTIONES MATHEMATICAE, 2000, 140 (03) :651-692
[4]   TRAIN TRACKS AND AUTOMORPHISMS OF FREE GROUPS [J].
BESTVINA, M ;
HANDEL, M .
ANNALS OF MATHEMATICS, 1992, 135 (01) :1-51
[5]   Laminations, trees, and irreducible automorphisms of free groups [J].
Bestvina, M ;
Feighn, M ;
Handel, M .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1997, 7 (02) :215-244
[6]  
BRIAN HB, 2006, J REINE ANGEW MATH, V598
[7]   MODULI OF GRAPHS AND AUTOMORPHISMS OF FREE GROUPS [J].
CULLER, M ;
VOGTMANN, K .
INVENTIONES MATHEMATICAE, 1986, 84 (01) :91-119
[8]  
CULLER M, 1987, P LOND MATH SOC, V55, P571
[9]  
DUNWOODY MJ, 1979, P LOND MATH SOC, V38, P193
[10]   Embedded spheres in S2 x S1# ••• #S2 x S1 [J].
Gadgil, S .
TOPOLOGY AND ITS APPLICATIONS, 2006, 153 (07) :1141-1151