Cocycle attractors in nonautonomously perturbed differential equations

被引:0
作者
Kloeden, PE
Stonier, DJ
机构
[1] Weierstr Inst Angew Anal & Stochast, D-10117 Berlin, Germany
[2] Deakin Univ, Ctr Appl Dynam Syst & Environm Modelling, Geelong, Vic 3217, Australia
来源
DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS | 1998年 / 4卷 / 02期
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A nonautonomous dynamical system obtained by a small nonautonomous perturbation of an autonomous system with a global attractor is shown to have a cocycle attractor in a neighbourhood of a global autonomous attractor. The component sets of the cocycle attractor are continuous, have constant Hausdorff dimension, are T-periodic if the nonautonomous perturbations are T-periodic, and asymptote to the autonomous attractor in the asymptotically autonomous case.
引用
收藏
页码:211 / 226
页数:16
相关论文
共 14 条
[1]  
[Anonymous], 1971, LECT TOPOLOGICAL DYN
[2]  
[Anonymous], DISCRETE CONT DYN S
[3]  
BABIN AV, 1986, MATH USSR SBORNIK, V54
[4]  
Falconer K., 1990, MATH FDN APPL, V46, P886, DOI 10.2307/2532125
[5]  
Hale J. K., 1988, ASYMPTOTIC BEHAV DIS
[6]  
KLOEDEN PD, 1997, IN PRESS NUMER ALGOR
[7]  
KLOEDEN PE, 1997, IN PRESS J DIFFERENC
[8]  
Schmalfuss B., 1992, NONLINEAR DYNAMICS A, P185
[9]  
Schmalfuss B, 1994, 304 U BREM I DYN SYS