Complete permutation polynomials over finite fields of odd characteristic

被引:20
作者
Xu Guangkui [1 ,2 ]
Cao, Xiwang [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Sch Math Sci, Nanjing 210016, Jiangsu, Peoples R China
[2] Huainan Normal Univ, Dept Math & Computat Sci, Huainan 232038, Peoples R China
基金
中国国家自然科学基金;
关键词
Complete permutation polynomial; Permutation polynomial; Dickson polynomial; Finite fields;
D O I
10.1016/j.ffa.2014.08.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present three classes of complete permutation monomials over finite fields of odd characteristic. Meanwhile, the compositional inverses of these polynomials are also investigated. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:228 / 240
页数:13
相关论文
共 20 条
[1]   A generalized lucas sequence and permutation binomials [J].
Akbary, A ;
Wang, Q .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (01) :15-22
[2]  
Amir Akbary, 2007, INT J MATH MATH SCI, V2007
[3]   New methods for generating permutation polynomials over finite fields [J].
Cao, Xiwang ;
Hu, Lei .
FINITE FIELDS AND THEIR APPLICATIONS, 2011, 17 (06) :493-503
[4]   Cubic monomial bent functions:: A subclass of M [J].
Charpin, Pascale ;
Kyureghyan, Gohar M. .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2008, 22 (02) :650-665
[5]  
Dickson LE, 1896, ANN MATH, V11, P65, DOI [10.2307/1967217, DOI 10.2307/1967217]
[6]  
Ding CS, 2009, SCI CHINA SER A, V52, P639, DOI 10.1007/s11425-008-0142-8
[7]   One-to-one highly nonlinear power functions on GF(2n) [J].
Dobbertin, H .
APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 1998, 9 (02) :139-152
[8]  
Hermite C., 1863, CR HEBD ACAD SCI, V57, P750
[9]   Two classes of permutation polynomials over finite fields [J].
Hou, Xiang-dong .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (02) :448-454
[10]   Permutation polynomials and applications to coding theory [J].
Laigle-Chapuy, Yann .
FINITE FIELDS AND THEIR APPLICATIONS, 2007, 13 (01) :58-70