New Crystallographic Snapshots of Large Domain Movements in Bacterial 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase

被引:9
作者
Ragwan, Edwin R. [1 ]
Arai, Eri [1 ]
Kung, Yan [1 ]
机构
[1] Bryn Mawr Coll, Dept Chem, 101 North Merion Ave, Bryn Mawr, PA 19010 USA
基金
美国国家卫生研究院;
关键词
HMG-COA REDUCTASE; MEVALONATE PATHWAY; HYDRIDE TRANSFER; SPECIFICITY; IDENTIFICATION; MECHANISM; CATALYSIS; BINDING; RESIDUE;
D O I
10.1021/acs.biochem.8b00869
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (HMGR) catalyzes the first committed step of the mevalonate pathway, which is used across biology in the biosynthesis of countless metabolites. HMGR consumes 2 equiv of the cofactor NAD(P)H to perform the four-electron reduction of HMG-CoA to mevalonate toward the production of steroids and isoprenoids, the largest class of natural products. Recent structural data have shown that HMGR contains a highly mobile C-terminal domain (CTD) that is believed to adopt many different conformations to permit binding and dissociation of the substrate, cofactors, and products at specific points during the reaction cycle. Here, we have characterized the HMGR from Delftia acidovorans as an NADH-specific enzyme and determined crystal structures of the enzyme in unbound, mevalonate-bound, and NADH- and citrate-bound states. Together, these structures depict ligand binding in both the active site and the cofactor-binding site while illustrating how a conserved helical motif confers NAD(P)H cofactor specificity. Unexpectedly, the NADH-bound structure also reveals a new conformation of the CTD, in which the domain has "flipped" upside-down, while directly binding the cofactor. By capturing these structural snapshots, this work not only expands the known range of HMGR domain movement but also provides valuable insight into the catalytic mechanism of this biologically important enzyme.
引用
收藏
页码:5715 / 5725
页数:11
相关论文
共 35 条
[1]   PHENIX: a comprehensive Python']Python-based system for macromolecular structure solution [J].
Adams, Paul D. ;
Afonine, Pavel V. ;
Bunkoczi, Gabor ;
Chen, Vincent B. ;
Davis, Ian W. ;
Echols, Nathaniel ;
Headd, Jeffrey J. ;
Hung, Li-Wei ;
Kapral, Gary J. ;
Grosse-Kunstleve, Ralf W. ;
McCoy, Airlie J. ;
Moriarty, Nigel W. ;
Oeffner, Robert ;
Read, Randy J. ;
Richardson, David C. ;
Richardson, Jane S. ;
Terwilliger, Thomas C. ;
Zwart, Peter H. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 :213-221
[2]   Towards automated crystallographic structure refinement with phenix.refine [J].
Afonine, Pavel V. ;
Grosse-Kunstleve, Ralf W. ;
Echols, Nathaniel ;
Headd, Jeffrey J. ;
Moriarty, Nigel W. ;
Mustyakimov, Marat ;
Terwilliger, Thomas C. ;
Urzhumtsev, Alexandre ;
Zwart, Peter H. ;
Adams, Paul D. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2012, 68 :352-367
[3]   iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM [J].
Battye, T. Geoff G. ;
Kontogiannis, Luke ;
Johnson, Owen ;
Powell, Harold R. ;
Leslie, Andrew G. W. .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 2011, 67 :271-281
[4]  
BENSCH WR, 1970, J BIOL CHEM, V245, P3755
[5]   Sequence comparisons reveal two classes of 3-hydroxy-3-methylglutaryl coenzyme A reductase [J].
Bochar, DA ;
Stauffacher, CV ;
Rodwell, VW .
MOLECULAR GENETICS AND METABOLISM, 1999, 66 (02) :122-127
[6]   Production of isoprenoid pharmaceuticals by engineered microbes [J].
Chang, Michelle C. Y. ;
Keasling, Jay D. .
NATURE CHEMICAL BIOLOGY, 2006, 2 (12) :674-681
[7]  
DARNAY BG, 1993, J BIOL CHEM, V268, P8429
[8]  
DARNAY BG, 1992, J BIOL CHEM, V267, P15064
[9]  
DURR IF, 1960, J BIOL CHEM, V235, P2572
[10]   Coot:: model-building tools for molecular graphics [J].
Emsley, P ;
Cowtan, K .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2004, 60 :2126-2132