Ultra-wide Baseline Aerial Imagery Matching in Urban Environments

被引:12
作者
Altwaijry, Hani [1 ]
Belongie, Serge [1 ]
机构
[1] Univ Calif San Diego, Dept Comp Sci & Engn, San Diego, CA 92103 USA
来源
PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2013 | 2013年
关键词
D O I
10.5244/C.27.15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Correspondence matching is a core problem in computer vision. Under narrow baseline viewing conditions, this problem has been successfully addressed using SIFT-like approaches. However, under wide baseline viewing conditions these methods often fail. In this paper we propose a method for correspondence estimation that addresses this challenge for aerial scenes in urban environments. Our method creates synthetic views and leverages self-similarity cues to recover correspondences using a RANSAC-based approach aided by self-similarity graph-based sampling. We evaluate our method on 30 challenging image pairs and demonstrate improved performance to alternative methods in the literature.
引用
收藏
页数:12
相关论文
共 37 条
[21]  
Leutenegger S, 2011, IEEE I CONF COMP VIS, P2548, DOI 10.1109/ICCV.2011.6126542
[22]  
Lowe David G., 1999, ICCV
[23]  
Matas J., 2002, BMVC
[24]  
Microsoft Corp, BING MAPS
[25]  
Mundy Joseph L., 1992, GEOMETRIC INVARIANCE
[26]  
Ortiz Raphael, 2012, CVPR
[27]  
Pritchett P., 1998, ICCV
[28]   A taxonomy and evaluation of dense two-frame stereo correspondence algorithms [J].
Scharstein, D ;
Szeliski, R .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2002, 47 (1-3) :7-42
[29]  
Shechtman E, 2007, PROC CVPR IEEE, P1744
[30]   Unsupervised Discovery of Mid-Level Discriminative Patches [J].
Singh, Saurabh ;
Gupta, Abhinav ;
Efros, Alexei A. .
COMPUTER VISION - ECCV 2012, PT II, 2012, 7573 :73-86