CONVOLUTION ALGEBRAS: RELATIONAL CONVOLUTION, GENERALISED MODALITIES AND INCIDENCE ALGEBRAS

被引:4
作者
Dongol, Brijesh [1 ]
Hayes, Ian J. [2 ]
Struth, Georg [3 ]
机构
[1] Univ Surrey, Guildford, Surrey, England
[2] Univ Queensland, Brisbane, Qld, Australia
[3] Univ Sheffield, Sheffield, S Yorkshire, England
基金
澳大利亚研究理事会; 英国工程与自然科学研究理事会;
关键词
relational convolution; relational semigroup; partial semigroup; quantale; convolution algebra; modal algebra; substructural logics; interval logics; duration calculus; KLEENE ALGEBRA; TEMPORAL LOGICS;
D O I
10.23638/LMCS-17(1:13)2021
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Convolution is a ubiquitous operation in mathematics and computing. The Kripke semantics for substructural and interval logics motivates its study for quantale-valued functions relative to ternary relations. The resulting notion of relational convolution leads to generalised binary and unary modal operators for qualitative and quantitative models, and to more conventional variants, when ternary relations arise from identities over partial semigroups. Convolution-based semantics for fragments of categorial, linear and incidence (segment or interval) logics are provided as qualitative applications. Quantitative examples include algebras of durations and mean values in the duration calculus.
引用
收藏
页码:13:1 / 13:34
页数:34
相关论文
共 53 条
  • [1] Abramsky S., 1993, Mathematical Structures in Computer Science, V3, P161, DOI 10.1017/S0960129500000189
  • [2] MAINTAINING KNOWLEDGE ABOUT TEMPORAL INTERVALS
    ALLEN, JF
    [J]. COMMUNICATIONS OF THE ACM, 1983, 26 (11) : 832 - 843
  • [3] KRIPKE MODELS FOR LINEAR LOGIC
    ALLWEIN, G
    DUNN, JM
    [J]. JOURNAL OF SYMBOLIC LOGIC, 1993, 58 (02) : 514 - 545
  • [4] Andreka H., 1994, Journal of Logic, Language and Information, V3, P1, DOI 10.1007/BF01066355
  • [5] [Anonymous], 1984, SERIES RATIONNELLES
  • [6] [Anonymous], 1995, Noncommutative Geometry
  • [7] [Anonymous], 2004, J APPL NONCLASSICAL
  • [8] Building program construction and verification tools from algebraic principles
    Armstrong, Alasdair
    Gomes, Victor B. F.
    Struth, Georg
    [J]. FORMAL ASPECTS OF COMPUTING, 2016, 28 (02) : 265 - 293
  • [9] Completeness of neighbourhood logic
    Barua, R
    Roy, S
    Zhou, CC
    [J]. JOURNAL OF LOGIC AND COMPUTATION, 2000, 10 (02) : 271 - 295
  • [10] Blackburn P., 2001, Modal Logic