Razumikhin-type stability theorems for functional fractional-order differential systems and applications

被引:122
作者
Chen, Boshan [1 ]
Chen, Jiejie [2 ]
机构
[1] Hubei Normal Univ, Coll Math & Stat, Huangshi 435002, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Automat, Educ Minist China, Key Lab Image Proc & Intelligent Control, Wuhan 430074, Peoples R China
关键词
Functional fractional-order differential system; Uniform stability; Global uniform stability; Razumikhin-type theorem; EQUATIONS; DELAY; MODELS; FLUID;
D O I
10.1016/j.amc.2014.12.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we studied the stability of functional fractional-order differential systems using a Lyapunov function and develop Razumikhin-type uniform stability and global uniform asymptotic stability theorems for functional fractional-order differential systems, which involve Riemann-Liouville and Caputo derivatives respectively. Two examples are given as application of our theorems. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:63 / 69
页数:7
相关论文
共 30 条
[1]   Positive solutions for Dirichlet problems, of singular nonlinear fractional differential equations [J].
Agarwal, Ravi P. ;
O'Regan, Donal ;
Stanek, Svatoslav .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 371 (01) :57-68
[2]   Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models [J].
Ahmed, E. ;
El-Sayed, A. M. A. ;
El-Saka, H. A. A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 325 (01) :542-553
[3]  
[Anonymous], 1977, THEORY FUNCTION DIFF
[4]  
[Anonymous], 1993, An Introduction to The Fractional Calculus and Fractional Differential Equations
[5]  
[Anonymous], COMMUN APPL NONLINEA
[6]   Existence results for fractional order functional differential equations with infinite delay [J].
Benchohra, A. ;
Henderson, J. ;
Ntouyas, S. K. ;
Ouahab, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (02) :1340-1350
[7]   Global attractivity for nonlinear fractional differential equations [J].
Chen, Fulai ;
Nieto, Juan. J. ;
Zhou, Yong .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (01) :287-298
[8]   Dynamic analysis of a class of fractional-order neural networks with delay [J].
Chen, Liping ;
Chai, Yi ;
Wu, Ranchao ;
Ma, Tiedong ;
Zhai, Houzhen .
NEUROCOMPUTING, 2013, 111 :190-194
[9]   Analytical stability bound for a class of delayed fractional-order dynamic systems [J].
Chen, YQ ;
Moore, KL .
NONLINEAR DYNAMICS, 2002, 29 (1-4) :191-200
[10]   The monotonic property and stability of solutions of fractional differential equations [J].
Choi, Sung Kyu ;
Koo, Namjip .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) :6530-6536