Machine Learning for Prioritization of Thermostabilizing Mutations for G-Protein Coupled Receptors

被引:9
作者
Muk, Sanychen [1 ]
Ghosh, Soumadwip [1 ]
Achuthan, Srisairam [1 ]
Chen, Xiaomin [2 ]
Yao, XiaoJie [2 ]
Sandhu, Manbir [1 ]
Griffor, Matthew C. [2 ]
Fennell, Kimberly F. [2 ]
Che, Ye [2 ]
Shanmugasundaram, Veerabahu [2 ]
Qiu, Xiayang [2 ]
Tate, Christopher G. [3 ]
Vaidehi, Nagarajan [1 ]
机构
[1] City Hope Natl Med Ctr, Beckman Res Inst, Dept Computat & Quantitat Med, Duarte, CA 91010 USA
[2] Pfizer, Discovery Sci, Groton, CT USA
[3] MRC Lab Mol Biol, Cambridge, England
基金
美国国家卫生研究院;
关键词
CHEMOKINE; STATES; PREDICTION; STABILITY;
D O I
10.1016/j.bpj.2019.10.023
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Although the three-dimensional structures of G-protein coupled receptors (GPCRs), the largest superfamily of drug targets, have enabled structure-based drug design, there are no structures available for 87% of GPCRs. This is due to the stiff challenge in purifying the inherently flexible GPCRs. Identifying thermostabilized mutant GPCRs via systematic alanine scanning mutations has been a successful strategy in stabilizing GPCRs, but it remains a daunting task for each GPCR. We developed a computational method that combines sequence-, structure-, and dynamics-based molecular properties of GPCRs that recapitulate GPCR stability, with four different machine learning methods to predict thermostable mutations ahead of experiments. This method has been trained on thermostability data for 1231 mutants, the largest publicly available data set. A blind prediction for thermostable mutations of the complement factor C5a receptor 1 retrieved 36% of the thermostable mutants in the top 50 prioritized mutants compared to 3% in the first 50 attempts using systematic alanine scanning.
引用
收藏
页码:2228 / 2239
页数:12
相关论文
共 48 条
[1]   The Rosetta All-Atom Energy Function for Macromolecular Modeling and Design [J].
Alford, Rebecca F. ;
Leaver-Fay, Andrew ;
Jeliazkov, Jeliazko R. ;
O'Meara, Matthew J. ;
DiMaio, Frank P. ;
Park, Hahnbeom ;
Shapovalov, Maxim V. ;
Renfrew, P. Douglas ;
Mulligan, Vikram K. ;
Kappel, Kalli ;
Labonte, Jason W. ;
Pacella, Michael S. ;
Bonneau, Richard ;
Bradley, Philip ;
Dunbrack, Roland L., Jr. ;
Das, Rhiju ;
Baker, David ;
Kuhlman, Brian ;
Kortemme, Tanja ;
Gray, Jeffrey J. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2017, 13 (06) :3031-3048
[2]  
[Anonymous], P NEUR NETW SIGN PRO
[3]   Structural Insights into Conformational Stability of Wild-Type and Mutant β1-Adrenergic Receptor [J].
Balaraman, Gouthaman S. ;
Bhattacharya, Supriyo ;
Vaidehi, Nagarajan .
BIOPHYSICAL JOURNAL, 2010, 99 (02) :568-577
[4]  
Ballesteros J. A., 1995, Methods in Neurosciences, V25, P366, DOI [10.1016/S1043-9471(05)80049-7, DOI 10.1016/S1043-9471(05)80049-7]
[5]   Ligand-stabilized conformational states of human β2 adrenergic receptor:: Insight into G-protein-coupled receptor activation [J].
Bhattacharya, Supriyo ;
Hall, Spencer E. ;
Li, Hubert ;
Vaidehi, Nagarajan .
BIOPHYSICAL JOURNAL, 2008, 94 (06) :2027-2042
[6]   Rapid Computational Prediction of Thermostabilizing Mutations for G Protein-Coupled Receptors [J].
Bhattacharya, Supriyo ;
Lee, Sangbae ;
Grisshammer, Reinhard ;
Tate, Christopher G. ;
Vaidehi, Nagarajan .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2014, 10 (11) :5149-5160
[7]  
Bhattacharya Supriyo, 2012, Methods Mol Biol, V914, P167, DOI 10.1007/978-1-62703-023-6_10
[8]   Computational Mapping of the Conformational Transitions in Agonist Selective Pathways of a G-Protein Coupled Receptor [J].
Bhattacharya, Supriyo ;
Vaidehi, Nagarajan .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (14) :5205-5214
[9]   Optimal classifier for imbalanced data using Matthews Correlation Coefficient metric [J].
Boughorbel, Sabri ;
Jarray, Fethi ;
El-Anbari, Mohammed .
PLOS ONE, 2017, 12 (06)
[10]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32