SQUARE-ROOT CANCELLATION FOR SUMS OF FACTORIZATION FUNCTIONS OVER SHORT INTERVALS IN FUNCTION FIELDS

被引:9
作者
Sawin, Will [1 ]
机构
[1] Columbia Univ, Dept Math, New York, NY 10027 USA
关键词
ARITHMETIC PROGRESSIONS MODULO; DIVISOR PROBLEM; PRIMES; NUMBER; SPACES;
D O I
10.1215/00127094-2020-0060
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present new estimates for sums of the divisor function and other similar arithmetic functions in short intervals over function fields. (When the intervals are long, one obtains a good estimate from the Riemann hypothesis.) We obtain an estimate that approaches square-root cancellation as long as the characteristic of the finite field is relatively large. This is done by a geometric method, inspired by work of Hast and Matei, where we calculate the singular locus of a variety whose F-q-points control this sum. This has applications to highly unbalanced moments of L-functions.
引用
收藏
页码:997 / 1026
页数:30
相关论文
共 37 条
  • [1] Andrade JC, 2021, REV MAT COMPLUT, V34, P239, DOI 10.1007/s13163-020-00350-2
  • [2] [Anonymous], 1986, THEORY RIEMANN ZETA
  • [3] ARTIN M., 1973, LECT NOTES MATH, V305, DOI 10.1007/BFb0070714
  • [4] PRIME POLYNOMIALS IN SHORT INTERVALS AND IN ARITHMETIC PROGRESSIONS
    Bank, Efrat
    Bary-Soroker, Lior
    Rosenzweig, Lior
    [J]. DUKE MATHEMATICAL JOURNAL, 2015, 164 (02) : 277 - 295
  • [5] BEILINSON AA, 1982, ASTERISQUE, P7
  • [6] On square-free values of large polynomials over the rational function field
    Carmon, Dan
    Entin, Alexei
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2021, 170 (02) : 247 - 264
  • [7] Deligne P., 1973, Groupes de monodromie en gomtrie algbrique. II (SGA 7 II), V340
  • [8] Deligne Pierre, 1980, I HAUTES ETUDES SCI, V52, P137
  • [9] Homological stability for Hurwitz spaces and the Cohen-Lenstra conjecture over function fields
    Ellenberg, Jordan S.
    Venkatesh, Akshay
    Westerland, Craig
    [J]. ANNALS OF MATHEMATICS, 2016, 183 (03) : 729 - 786
  • [10] Algebraic twists of modular forms and Hecke orbits
    Fouvry, Etienne
    Kowalski, Emmanuel
    Michel, Philippe
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2015, 25 (02) : 580 - 657