Peripheral halogenation engineering controls molecular stacking to enable highly efficient organic solar cells

被引:124
作者
Zou, Yalu [1 ,2 ]
Chen, Hongbin [1 ,2 ]
Bi, Xingqi [1 ,2 ]
Xu, Xiaoyun [3 ]
Wang, Hebin [4 ]
Lin, Menglu [4 ]
Ma, Zaifei
Zhang, Mingtao [1 ,2 ]
Li, Chenxi [1 ,2 ]
Wan, Xiangjian [1 ,2 ]
Long, Guankui [4 ,5 ]
Zhaoyang, Yao [1 ,2 ]
Chen, Yongsheng [1 ,2 ]
机构
[1] Nankai Univ, State Key Lab, Tianjin 300071, Peoples R China
[2] Nankai Univ, Renewable Energy Convers & Storage Ctr RECAST, Inst Elementoorgan Chem,Coll Chem, Ctr Nanoscale Sci & Technol,Key Lab Functional Po, Tianjin 300071, Peoples R China
[3] Donghua Univ, Coll Mat Sci & Engn, Ctr Adv Low Dimens Mat, State Key Lab Modificat Chem Fibers & Polymer Mat, Shanghai 201620, Peoples R China
[4] Nankai Univ, Natl Inst Adv Mat, Coll Mat Sci & Engn, Renewable Energy Convers & Storage Ctr RECAST, Tianjin 300350, Peoples R China
[5] South China Univ Technol, State Key Lab Luminescent Mat & Devices, Guangzhou 510640, Peoples R China
关键词
CHARGE-TRANSPORT; ACCEPTORS; FLUORINATION; PERFORMANCE; SEMICONDUCTORS; POLYMERS; MOBILITY; DESIGN; UNITS;
D O I
10.1039/d2ee01340a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The diverse molecular stacking tuned by peripheral halogens in non-fullerene acceptors (NFAs) significantly affects the molecular physicochemical properties, the film morphologies and thus the power conversion efficiencies (PCEs) of organic solar cells (OSCs). Despite the crucial role of peripheral halogens, few explorations have been performed to bridge peripheral halogenation with molecular stackings and device performances, especially for the state-of-the-art Y-series. Herein, a series of high-efficient NFAs, CH-6F, CH-4Cl and CH-6Cl, are constructed with the same backbone but different peripheral halogenations in both conjugate extended central units and end groups. Single-crystal analysis indicates that CH-6F possesses similar molecular packings to Y6; however, CH-4Cl and CH-6Cl with chloro-substitutions demonstrate several quite unique packing modes of end unit to central unit, etc. Compared with CH-6F and Y6, CH-4Cl and CH-6Cl possess greatly reduced electron reorganization energies and shorter intermolecular packing distances, and exhibit more balanced charge mobilities, better phase separation, and lower energy disorders when blended with the PM6 donor. Furthermore, the reduced energy offsets between charge transfer and local exciton states for CH-4Cl and CH-6Cl result in an enhanced hybridization of these two states and thus suppress the non-radiative recombination losses in OSCs. Consequently, high-efficient OSCs are afforded by utilizing CH-series NFAs with a champion PCE of 18.22% and a markedly reduced Delta V-nr of 0.203 V in CH-4Cl-based ternary devices. Our study reveals that such a slight modification of peripheral halogens could cause quite different but superior intermolecular packings, rendering peripheral halogenation engineering as an effective strategy to further boost PCEs of high-performance OSCs through delicate molecular stacking control.
引用
收藏
页码:3519 / 3533
页数:15
相关论文
共 92 条
[31]   Fluorination of the Quinoxaline-Based p-Type Polymer and n-Type Small Molecule for High VOC Organic Solar Cells [J].
Ji, Hongru ;
Li, Jianfeng ;
Du, Mengzhen ;
Yang, Jing ;
Tang, Ailing ;
Li, Gongqiang ;
Guo, Qiang ;
Zhou, Erjun .
JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (20) :10876-10882
[32]   Recent progress on all-small molecule organic solar cells using small-molecule nonfullerene acceptors [J].
Kan, Bin ;
Kan, Yuanyuan ;
Zuo, Lijian ;
Shi, Xueliang ;
Gao, Ke .
INFOMAT, 2021, 3 (02) :175-200
[33]   The rational and effective design of nonfullerene acceptors guided by a semi-empirical model for an organic solar cell with an efficiency over 15% [J].
Ke, Xin ;
Meng, Lingxian ;
Wan, Xiangjian ;
Li, Mingpeng ;
Sun, Yanna ;
Guo, Ziqi ;
Wu, Simin ;
Zhang, Hongtao ;
li, Chenxi ;
Chen, Yongsheng .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (19) :9726-9732
[34]   Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells [J].
Li, Chao ;
Zhou, Jiadong ;
Song, Jiali ;
Xu, Jinqiu ;
Zhang, Huotian ;
Zhang, Xuning ;
Guo, Jing ;
Zhu, Lei ;
Wei, Donghui ;
Han, Guangchao ;
Min, Jie ;
Zhang, Yuan ;
Xie, Zengqi ;
Yi, Yuanping ;
Yan, He ;
Gao, Feng ;
Liu, Feng ;
Sun, Yanming .
NATURE ENERGY, 2021, 6 (06) :605-613
[35]   Aggregation of non-fullerene acceptors in organic solar cells [J].
Li, Donghui ;
Zhang, Xue ;
Liu, Dan ;
Wang, Tao .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (31) :15607-15619
[36]  
Li G, 2012, NAT PHOTONICS, V6, P153, DOI [10.1038/nphoton.2012.11, 10.1038/NPHOTON.2012.11]
[37]   Systematic Merging of Nonfullerene Acceptor π-Extension and Tetrafluorination Strategies Affords Polymer Solar Cells with >16% Efficiency [J].
Li, Guoping ;
Zhang, Xiaohua ;
Jones, Leighton O. ;
Alzola, Joaquin M. ;
Mukherjee, Subhrangsu ;
Feng, Liang-wen ;
Zhu, Weigang ;
Stern, Charlotte L. ;
Huang, Wei ;
Yu, Junsheng ;
Sangwan, Vinod K. ;
DeLongchamp, Dean M. ;
Kohlstedt, Kevin L. ;
Wasielewski, Michael R. ;
Hersam, Mark C. ;
Schatz, George C. ;
Facchetti, Antonio ;
Marks, Tobin J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (16) :6123-6139
[38]   Asymmetric Electron Acceptors for High-Efficiency and Low-Energy-Loss Organic Photovoltaics [J].
Li, Shuixing ;
Zhan, Lingling ;
Jin, Yingzhi ;
Zhou, Guanqing ;
Lau, Tsz-Ki ;
Qin, Ran ;
Shi, Minmin ;
Li, Chang-Zhi ;
Zhu, Haiming ;
Lu, Xinhui ;
Zhang, Fengling ;
Chen, Hongzheng .
ADVANCED MATERIALS, 2020, 32 (24)
[39]   Mechanism study on organic ternary photovoltaics with 18.3% certified efficiency: from molecule to device [J].
Li, Yaokai ;
Guo, Yuan ;
Chen, Zeng ;
Zhan, Lingling ;
He, Chengliang ;
Bi, Zhaozhao ;
Yao, Nannan ;
Li, Shuixing ;
Zhou, Guanqing ;
Yi, Yuanping ;
Yang, Yang ;
Zhu, Haiming ;
Ma, Wei ;
Gao, Feng ;
Zhang, Fengling ;
Zuo, Lijian ;
Chen, Hongzheng .
ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (02) :855-865
[40]   Tailoring and Modifying an Organic Electron Acceptor toward the Cathode Interlayer for Highly Efficient Organic Solar Cells [J].
Liao, Qing ;
Kang, Qian ;
Yang, Yi ;
An, Cunbin ;
Xu, Bowei ;
Hou, Jianhui .
ADVANCED MATERIALS, 2020, 32 (07)