Nonlinear codes from points of bounded height

被引:1
作者
Hurlburt, Chris [1 ]
Thunder, Jeffrey Lin [1 ]
机构
[1] No Illinois Univ, Dept Math, De Kalb, IL 60115 USA
基金
美国国家科学基金会;
关键词
nonlinear error correcting codes; algebraic-geometric codes;
D O I
10.1016/j.ffa.2005.11.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper generalizes Elkies' construction of error-correcting nonlinear codes found in [N. Elkies, Excellent nonlinear codes from modular curves, in: Proceedings of the 33rd Annual ACM Symposium on the Theory of Computing, STOC'01, Hersonissos, Crete, Greece, 200 1, pp. 200-208]. The generalization produces a precise average code size over codes in the new construction. The result is a larger family of codes with similar transmission rates and error detection rates to the nonlinear codes found in [N. Elkies, Excellent nonlinear codes from modular curves, in: Proceedings of the 33rd Annual ACM Symposium on the Theory of Computing, STOC'01, Hersonissos, Crete, Greece, 200 1, pp. 200-208]. Moreover, we exhibit a connection between these nonlinear codes and solutions to simple homogeneous linear equations defined over the function field of a curve. (c) 2005 Published by Elsevier Inc.
引用
收藏
页码:281 / 292
页数:12
相关论文
共 4 条
[1]  
Elkies N. D., 2001, PROC 33 ANN ACM S TH, P200
[2]  
Roy D, 1996, J REINE ANGEW MATH, V476, P1
[3]  
Thunder JL, 1996, J REINE ANGEW MATH, V475, P167
[4]  
Tsfasman M. A., 1991, ALGEBRAIC GEOMETRIC