Genetic Basis of Haloperidol Resistance in Saccharomyces cerevisiae Is Complex and Dose Dependent

被引:15
|
作者
Wang, Xin [1 ,2 ]
Kruglyak, Leonid [3 ,4 ,5 ]
机构
[1] Princeton Univ, Dept Mol Biol, Princeton, NJ 08544 USA
[2] Princeton Univ, Lewis Sigler Inst Integrat Genom, Princeton, NJ 08544 USA
[3] Univ Calif Los Angeles, Dept Human Genet, Los Angeles, CA USA
[4] Univ Calif Los Angeles, Dept Biol Chem, Los Angeles, CA 90024 USA
[5] Howard Hughes Med Inst, Chevy Chase, MD USA
来源
PLOS GENETICS | 2014年 / 10卷 / 12期
基金
美国国家卫生研究院;
关键词
OXYSTEROL-BINDING-PROTEIN; QUANTITATIVE TRAIT LOCUS; YEAST; MEMBRANE; EXPRESSION; RAS; LOCALIZATION; DISSECTION; RECEPTOR; HOMOLOG;
D O I
10.1371/journal.pgen.1004894
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The genetic basis of most heritable traits is complex. Inhibitory compounds and their effects in model organisms have been used in many studies to gain insights into the genetic architecture underlying quantitative traits. However, the differential effect of compound concentration has not been studied in detail. In this study, we used a large segregant panel from a cross between two genetically divergent yeast strains, BY4724 (a laboratory strain) and RM11_1a (a vineyard strain), to study the genetic basis of variation in response to different doses of a drug. Linkage analysis revealed that the genetic architecture of resistance to the small-molecule therapeutic drug haloperidol is highly dose-dependent. Some of the loci identified had effects only at low doses of haloperidol, while other loci had effects primarily at higher concentrations of the drug. We show that a major QTL affecting resistance across all concentrations of haloperidol is caused by polymorphisms in SWH1, a homologue of human oxysterol binding protein. We identify a complex set of interactions among the alleles of the genes SWH1, MKT1, and IRA2 that are most pronounced at a haloperidol dose of 200 mu M and are only observed when the remainder of the genome is of the RM background. Our results provide further insight into the genetic basis of drug resistance.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Identification of the Genetic Requirements for Zinc Tolerance and Toxicity in Saccharomyces cerevisiae
    Zhao, Yun-ying
    Cao, Chun-lei
    Liu, Ying-li
    Wang, Jing
    Li, Jie
    Li, Shi-yun
    Deng, Yu
    G3-GENES GENOMES GENETICS, 2020, 10 (02): : 479 - 488
  • [22] Amiodarone inhibits multiple drug resistance in yeast Saccharomyces cerevisiae
    Knorre, Dmitry A.
    Krivonosova, Tatiana N.
    Markova, Olga V.
    Severin, Fedor F.
    ARCHIVES OF MICROBIOLOGY, 2009, 191 (08) : 675 - 679
  • [23] The impact of the genetic background on gene deletion phenotypes in Saccharomyces cerevisiae
    Galardini, Marco
    Busby, Bede P.
    Vieitez, Cristina
    Dunham, Alistair S.
    Typas, Athanasios
    Beltrao, Pedro
    MOLECULAR SYSTEMS BIOLOGY, 2019, 15 (12)
  • [24] Identification new potential multidrug resistance proteins of Saccharomyces cerevisiae
    Grechko, V. M.
    Podolsky, D. E.
    Cheshchevik, V. T.
    JOURNAL OF MICROBIOLOGICAL METHODS, 2020, 176
  • [25] Saccharomyces cerevisiae quiescent cells: cadmium resistance and adaptive response
    Pisareva, Emiliya Ivanova
    Tomova, Anna Atanasova
    Petrova, Ventsislava Yankova
    BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT, 2021, 35 (01) : 1827 - 1837
  • [26] Dose-Dependent Protective and Inductive Effects of Xanthohumol on Oxidative DNA Damage in Saccharomyces cerevisiae
    Carvalho, Daniel O.
    Oliveira, Rui
    Johansson, Bjorn
    Guido, Luis F.
    FOOD TECHNOLOGY AND BIOTECHNOLOGY, 2016, 54 (01) : 60 - 69
  • [27] STRATEGIES FOR THE GENETIC MANIPULATION OF SACCHAROMYCES-CEREVISIAE
    TUITE, MF
    CRITICAL REVIEWS IN BIOTECHNOLOGY, 1992, 12 (1-2) : 157 - 188
  • [28] The Genetic Basis of Variation in Clean Lineages of Saccharomyces cerevisiae in Response to Stresses Encountered during Bioethanol Fermentations
    Greetham, Darren
    Wimalasena, Tithira T.
    Leung, Kay
    Marvin, Marcus E.
    Chandelia, Yogeshwar
    Hart, Andrew J.
    Phister, Trevor G.
    Tucker, Gregory A.
    Louis, Edward J.
    Smart, Katherine A.
    PLOS ONE, 2014, 9 (08):
  • [29] A genetic approach to study polyubiquitination in Saccharomyces cerevisiae
    Meza-Gutierrez, Fernando
    Simsek, Deniz
    Toczyski, David Paul
    UBIQUITIN AND UBIQUITIN-LIKE PROTEIN MODIFIERS, 2019, 618 : 49 - 72
  • [30] Genetic Variation in Saccharomyces cerevisiae: Circuit Diversification in a Signal Transduction Network
    Chin, Brian L.
    Ryan, Owen
    Lewitter, Fran
    Boone, Charles
    Fink, Gerald R.
    GENETICS, 2012, 192 (04) : 1523 - +