Engineering the Electronic Structure of MoS2 Nanorods by N and Mn Dopants for Ultra-Efficient Hydrogen Production

被引:216
作者
Sun, Tao [1 ,2 ,3 ]
Wang, Jun [1 ,2 ]
Chi, Xiao [4 ,5 ]
Lin, Yunxiang [6 ]
Chen, Zhongxin [3 ]
Ling, Xiang [1 ,2 ]
Qiu, Chuntian [1 ,2 ]
Xu, Yangsen [1 ,2 ]
Song, Li [6 ]
Chen, Wei [3 ]
Su, Chenliang [1 ,2 ]
机构
[1] Shenzhen Univ, SZU NUS Collaborat Ctr, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Int Collaborat Lab Mat Optoelect Sci & Technol 2D, Engn Technol Res Ctr Mat Informat Funct Devices &, Coll Optoelect Engn, Shenzhen 518060, Peoples R China
[3] Natl Univ Singapore, Dept Chem, 3 Sci Dr 3, Singapore 117543, Singapore
[4] Natl Univ Singapore, Dept Phys, 5 Res Link, Singapore 117603, Singapore
[5] Natl Univ Singapore, Singapore Synchrotron Light Source, 5 Res Link, Singapore 117603, Singapore
[6] Univ Sci & Technol China, CAS Ctr Excellence Nanosci, Natl Synchrotron Radiat Lab, Hefei 230029, Anhui, Peoples R China
来源
ACS CATALYSIS | 2018年 / 8卷 / 08期
基金
新加坡国家研究基金会;
关键词
hydrogen evolution reaction; N and Mn codoping; molybdenum disulfide; electronic structures; H* adsorption; RAY-ABSORPTION SPECTROSCOPY; OXYGEN REDUCTION REACTION; ACTIVE EDGE SITES; EVOLUTION REACTION; MOLYBDENUM SULFIDES; ELECTROCATALYSTS; PERFORMANCE; NANOSHEETS; CATALYSTS; NITROGEN;
D O I
10.1021/acscatal.8b00783
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Developing economical and efficient electrocatalysts with nonprecious metals for the hydrogen evolution reaction (HER), especially in water-alkaline electrolyzers, is pivotal for large-scale hydrogen production. Recently, both density functional theory (DFT) calculations and experimental studies have demonstrated that earth-abundant MoS2 is a promising HER electrocatalyst in acidic solution. However, the HER kinetics of MoS2 in alkaline solution still suffer from a high overpotential (90-220 mV at a current density of 10 mA cm(-2)). Herein, we report a combined experimental and first-principle approach toward achieving an economical and ultraefficient MoS2-based electrocatalyst for the HER by fine-tuning the electronic structure of MoS2 nanorods with N and Mn dopants. The developed N,Mn codoped MoS2 catalyst exhibits an outstanding HER performance with 5, overpotentials of 66 and 70 mV at 10 mA cm(-2) in alkaline and phosphate-buffered saline media, respectively, and corresponding Tafel slopes of 50 and 65 mV dec(-1). Moreover, the catalyst also exhibits long-term stability in HER tests. DFT calculations suggest that (1) the electrocatalytic performance can be attributed to the enhanced conductivity and optimized electronic structures for facilitating H* adsorption and desorption after N and Mn codoping and (2) N and Mn dopants can greatly activate the catalytic HER activity of the S-edge for MoS2. The discovery of a simple approach toward the synthesis of highly active and low-cost MoS2-based electrocatalysts in both alkaline and neutral electrolytes allows the premise of scalable production of hydrogen fuels.
引用
收藏
页码:7585 / 7592
页数:15
相关论文
共 51 条
[11]   MoS2 Quantum Dot-Interspersed Exfoliated MoS2 Nanosheets [J].
Gopalakrishnan, Deepesh ;
Damien, Dijo ;
Shaijumon, Manikoth M. .
ACS NANO, 2014, 8 (05) :5297-5303
[12]   Biornimetic hydrogen evolution:: MoS2 nanoparticles as catalyst for hydrogen evolution [J].
Hinnemann, B ;
Moses, PG ;
Bonde, J ;
Jorgensen, KP ;
Nielsen, JH ;
Horch, S ;
Chorkendorff, I ;
Norskov, JK .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (15) :5308-5309
[13]   Determination of the kinetics of the hydrogen evolution reaction by the galvanostatic step technique [J].
Hitz, C ;
Lasia, A .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2002, 532 (1-2) :133-140
[14]   Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts [J].
Jaramillo, Thomas F. ;
Jorgensen, Kristina P. ;
Bonde, Jacob ;
Nielsen, Jane H. ;
Horch, Sebastian ;
Chorkendorff, Ib .
SCIENCE, 2007, 317 (5834) :100-102
[15]   Annealing effect on the electronic structure and magnetic properties of Mn-doped ZnO films [J].
Jin, J. ;
Zhang, X. Y. ;
Zhou, Y. X. ;
Chang, G. S. .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2012, 27 (03)
[16]  
Kibsgaard J, 2012, NAT MATER, V11, P963, DOI [10.1038/NMAT3439, 10.1038/nmat3439]
[17]   In Situ Fabrication of Ni-Mo Bimetal Sulfide Hybrid as an Efficient Electrocatalyst for Hydrogen Evolution over a Wide pH Range [J].
Kuang, Panyong ;
Tong, Tong ;
Fan, Ke ;
Yu, Jiaguo .
ACS CATALYSIS, 2017, 7 (09) :6179-6187
[18]   Molybdenum sulfides-efficient and viable materials for electro - and photoelectrocatalytic hydrogen evolution [J].
Laursen, Anders B. ;
Kegnaes, Soren ;
Dahl, Soren ;
Chorkendorff, Ib .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (02) :5577-5591
[19]   Low-temperature Synthesis of Heterostructures of Transition Metal Dichalcogenide Alloys (WxMo1-xS2) and Graphene with Superior Catalytic Performance for Hydrogen Evolution [J].
Lei, Yu ;
Pakhira, Srimanta ;
Fujisawa, Kazunori ;
Wang, Xuyang ;
Iyiola, Oluwagbenga Oare ;
Lopez, Nestor Perea ;
Elias, Ana Laura ;
Rajukumar, Lakshmy Pulickal ;
Zhou, Chanjing ;
Kabius, Bernd ;
Alem, Nasim ;
Endo, Morinobu ;
Lv, Ruitao ;
Mendoza-Cortes, Jose L. ;
Terrones, Mauricio .
ACS NANO, 2017, 11 (05) :5103-5112
[20]   Nitrogen K-edge XANES -: An overview of reference compounds used to identify 'unknown' organic nitrogen in environmental samples [J].
Leinweber, Peter ;
Kruse, Jens ;
Walley, Fran L. ;
Gillespie, Adam ;
Eckhardt, Kai-Uwe ;
Blyth, Robert I. R. ;
Regier, Tom .
JOURNAL OF SYNCHROTRON RADIATION, 2007, 14 :500-511