Methods and tools for spatial mapping of single-cell RNAseq clusters in Drosophila

被引:6
作者
Mohr, Stephanie E. [1 ]
Tattikota, Sudhir Gopal [1 ]
Xu, Jun [1 ]
Zirin, Jonathan [1 ]
Hu, Yanhui [1 ]
Perrimon, Norbert [1 ,2 ]
机构
[1] Harvard Med Sch, Blavatnik Inst, Dept Genet, Boston, MA 02115 USA
[2] Howard Hughes Med Inst, Boston, MA 02115 USA
关键词
Drosophila; single-cell RNAseq; spatial mapping; in situ hybridization; RNA detection; protein detection; GAL4-UAS; gene expression; IN-SITU HYBRIDIZATION; TARGETED GENE-EXPRESSION; GLOBAL ANALYSIS; VERSATILE TOOL; PATTERNS; PLATFORM; ATLAS; STRATEGIES; INSERTION; DESIGN;
D O I
10.1093/genetics/iyab019
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Single-cell RNA sequencing (scRNAseq) experiments provide a powerful means to identify clusters of cells that share common gene expression signatures. A major challenge in scRNAseq studies is to map the clusters to specific anatomical regions along the body and within tissues. Existing data, such as information obtained from large-scale in situ RNA hybridization studies, cell type specific transcriptomics, gene expression reporters, antibody stainings, and fluorescent tagged proteins, can help to map clusters to anatomy. However, in many cases, additional validation is needed to precisely map the spatial location of cells in clusters. Several approaches are available for spatial resolution in Drosophila, including mining of existing datasets, and use of existing or new tools for direct or indirect detection of RNA, or direct detection of proteins. Here, we review available resources and emerging technologies that will facilitate spatial mapping of scRNAseq clusters at high resolution in Drosophila. Importantly, we discuss the need, available approaches, and reagents for multiplexing gene expression detection in situ, as in most cases scRNAseq clusters are defined by the unique coexpression of sets of genes.
引用
收藏
页数:11
相关论文
共 124 条
[21]   Spatially resolved, highly multiplexed RNA profiling in single cells [J].
Chen, Kok Hao ;
Boettiger, Alistair N. ;
Moffitt, Jeffrey R. ;
Wang, Siyuan ;
Zhuang, Xiaowei .
SCIENCE, 2015, 348 (6233)
[22]  
Chern R, 2020, BIORXIV
[23]  
Clevers H, 2017, CELL SYST, V4, P255, DOI 10.1016/j.cels.2017.03.006
[24]   Cellular diversity in the Drosophila midbrain revealed by single-cell transcriptomics [J].
Croset, Vincent ;
Treiber, Christoph D. ;
Waddell, Scott .
ELIFE, 2018, 7
[25]   ASAP 2020 update: an open, scalable and interactive web-based portal for (single-cell) omics analyses [J].
David, Fabrice P. A. ;
Litovchenko, Maria ;
Deplancke, Bart ;
Gardeux, Vincent .
NUCLEIC ACIDS RESEARCH, 2020, 48 (W1) :W403-W414
[26]   A Single-Cell Transcriptome Atlas of the Aging Drosophila Brain [J].
Davie, Kristofer ;
Janssens, Jasper ;
Koldere, Duygu ;
De Waegeneer, Maxime ;
Pech, Uli ;
Kreft, Lukasz ;
Aibar, Sara ;
Makhzami, Samira ;
Christiaens, Valerie ;
Gonzalez-Blas, Carmen Bravo ;
Poovathingal, Suresh ;
Hulselmans, Gert ;
Spanier, Katina I. ;
Moerman, Thomas ;
Vanspauwen, Bram ;
Geurs, Sarah ;
Voet, Thierry ;
Lammertyn, Jeroen ;
Thienpont, Bernard ;
Liu, Sha ;
Konstantinides, Nikos ;
Fiers, Mark ;
Verstreken, Patrik ;
Aerts, Stein .
CELL, 2018, 174 (04) :982-+
[27]  
Diaz-Mejia JJ, 2019, F1000RESEARCH, V8, P296, DOI DOI 10.12688/F1000RESEARCH.18490.3
[28]   Genetic Reagents for Making Split-GAL4 Lines in Drosophila [J].
Dionne, Heather ;
Hibbard, Karen L. ;
Cavallaro, Amanda ;
Kao, Jui-Chun ;
Rubin, Gerald M. .
GENETICS, 2018, 209 (01) :31-35
[29]   Drosophila intestinal stem and progenitor cells are major sources and regulators of homeostatic niche signals [J].
Doupe, David P. ;
Marshall, Owen J. ;
Dayton, Hannah ;
Brand, Andrea H. ;
Perrimon, Norbert .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (48) :12218-12223
[30]   Imaging Flies by Fluorescence Microscopy: Principles, Technologies, and Applications [J].
Dunst, Sebastian ;
Tomancak, Pavel .
GENETICS, 2019, 211 (01) :15-34