A Machine Learning-Based Predictive Model for Predicting Lymph Node Metastasis in Patients With Ewing's Sarcoma

被引:19
|
作者
Li, Wenle [1 ,2 ]
Zhou, Qian [3 ]
Liu, Wencai [4 ]
Xu, Chan [3 ,5 ]
Tang, Zhi-Ri [6 ]
Dong, Shengtao [7 ]
Wang, Haosheng [8 ]
Li, Wanying [2 ]
Zhang, Kai [1 ,2 ]
Li, Rong [9 ]
Zhang, Wenshi [9 ]
Hu, Zhaohui [10 ]
Shibin, Su [11 ]
Liu, Qiang [2 ]
Kuang, Sirui [12 ]
Yin, Chengliang [12 ]
机构
[1] Xianyang Cent Hosp, Dept Orthoped, Xianyang, Peoples R China
[2] Xianyang Cent Hosp, Clin Med Res Ctr, Xianyang, Peoples R China
[3] Chongqing Liang Jiang New Area, Dept Resp & Crit Care Med, Peoples Hosp 1, Chongqing, Peoples R China
[4] Nanchang Univ, Dept Orthopaed Surg, Affiliated Hosp 1, Nanchang, Peoples R China
[5] Xianyang Cent Hosp, Dept Dermatol, Xianyang, Peoples R China
[6] Wuhan Univ, Schoo lof Phys & Technol, Wuhan, Peoples R China
[7] Dalian Med Univ, Dept Spine Surg, Affiliated Hosp 2, Dalian, Peoples R China
[8] Second Hosp Jilin Univ, Dept Orthopaed, Changchun, Peoples R China
[9] Shaanxi Univ Tradit Chinese Med, Clin Med Coll 1, Xianyang, Peoples R China
[10] Liuzhou Peoples Hosp, Dept Spinal Surg, Liuzhou, Peoples R China
[11] Xiamen Bank, Dept Business Management, Xiamen, Peoples R China
[12] Macau Univ Sci & Technol, Fac Med, Macau, Peoples R China
关键词
Ewing sarcoma; lymph node metastasis; SEER; multi-center; machine learning; web calculator; PROGNOSTIC-FACTORS; SURVIVAL; RISK; OUTCOMES; BIOPSY;
D O I
10.3389/fmed.2022.832108
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective: In order to provide reference for clinicians and bring convenience to clinical work, we seeked to develop and validate a risk prediction model for lymph node metastasis (LNM) of Ewing's sarcoma (ES) based on machine learning (ML) algorithms.& nbsp;Methods: Clinicopathological data of 923 ES patients from the Surveillance, Epidemiology, and End Results (SEER) database and 51 ES patients from multi-center external validation set were retrospectively collected. We applied ML algorithms to establish a risk prediction model. Model performance was checked using 10-fold cross-validation in the training set and receiver operating characteristic (ROC) curve analysis in external validation set. After determining the best model, a web-based calculator was made to promote the clinical application.& nbsp;Results: LNM was confirmed or unable to evaluate in 13.86% (135 out of 974) ES patients. In multivariate logistic regression, race, T stage, M stage and lung metastases were independent predictors for LNM in ES. Six prediction models were established using random forest (RF), naive Bayes classifier (NBC), decision tree (DT), xgboost (XGB), gradient boosting machine (GBM), logistic regression (LR). In 10-fold cross-validation, the average area under curve (AUC) ranked from 0.705 to 0.764. In ROC curve analysis, AUC ranged from 0.612 to 0.727. The performance of the RF model ranked best. Accordingly, a web-based calculator was developed (https://share.streamlit.io/liuwencai2/es_lnm/main/es_lnm.py).& nbsp;Conclusion: With the help of clinicopathological data, clinicians can better identify LNM in ES patients. Risk prediction models established in this study performed well, especially the RF model.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Development of a Machine Learning-Based Predictive Model for Lung Metastasis in Patients With Ewing Sarcoma
    Li, Wenle
    Hong, Tao
    Liu, Wencai
    Dong, Shengtao
    Wang, Haosheng
    Tang, Zhi-Ri
    Li, Wanying
    Wang, Bing
    Hu, Zhaohui
    Liu, Qiang
    Qin, Yong
    Yin, Chengliang
    FRONTIERS IN MEDICINE, 2022, 9
  • [2] Machine Learning-Based Prediction of Lymph Node Metastasis Among Osteosarcoma Patients
    Li, Wenle
    Liu, Yafeng
    Liu, Wencai
    Tang, Zhi-Ri
    Dong, Shengtao
    Li, Wanying
    Zhang, Kai
    Xu, Chan
    Hu, Zhaohui
    Wang, Haosheng
    Lei, Zhi
    Liu, Qiang
    Guo, Chunxue
    Yin, Chengliang
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [3] Interpretable machine learning-based clinical prediction model for predicting lymph node metastasis in patients with intrahepatic cholangiocarcinoma
    Xie, Hui
    Hong, Tao
    Liu, Wencai
    Jia, Xiaodong
    Wang, Le
    Zhang, Huan
    Xu, Chan
    Zhang, Xiaoke
    Li, Wen-Le
    Wang, Quan
    Yin, Chengliang
    Lv, Xu
    BMC GASTROENTEROLOGY, 2024, 24 (01)
  • [4] A machine learning model for predicting the lymph node metastasis of early gastric cancer not meeting the endoscopic curability criteria
    Kato, Minoru
    Hayashi, Yoshito
    Uema, Ryotaro
    Kanesaka, Takashi
    Yamaguchi, Shinjiro
    Maekawa, Akira
    Yamada, Takuya
    Yamamoto, Masashi
    Kitamura, Shinji
    Inoue, Takuya
    Yamamoto, Shunsuke
    Kizu, Takashi
    Takeda, Risato
    Ogiyama, Hideharu
    Yamamoto, Katsumi
    Aoi, Kenji
    Nagaike, Koji
    Sasai, Yasutaka
    Egawa, Satoshi
    Akamatsu, Haruki
    Ogawa, Hiroyuki
    Komori, Masato
    Akihiro, Nishihara
    Yoshihara, Takeo
    Tsujii, Yoshiki
    Takehara, Tetsuo
    GASTRIC CANCER, 2024, 27 (05) : 1069 - 1077
  • [5] A machine learning-based model for predicting distant metastasis in patients with rectal cancer
    Qiu, Binxu
    Shen, Zixiong
    Wu, Song
    Qin, Xinxin
    Yang, Dongliang
    Wang, Quan
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [6] A Preoperative Prediction Model for Lymph Node Metastasis in Patients with Gastric Cancer Using a Machine Learning-based Ultrasomics Approach
    Lin, Wei-wei
    Zhong, Qi
    Guo, Jingjing
    Yu, Shanshan
    Li, Kunhuang
    Shen, Qingling
    Zhuo, Minling
    Xue, Ensheng
    Lin, Peng
    Chen, Zhikui
    CURRENT MEDICAL IMAGING, 2024,
  • [7] Development and validation of a machine learning model to predict the risk of lymph node metastasis in renal carcinoma
    Feng, Xiaowei
    Hong, Tao
    Liu, Wencai
    Xu, Chan
    Li, Wanying
    Yang, Bing
    Song, Yang
    Li, Ting
    Li, Wenle
    Zhou, Hui
    Yin, Chengliang
    FRONTIERS IN ENDOCRINOLOGY, 2022, 13
  • [8] Machine -Learning Based Elastography Analysis in Predicting Lymph Node Metastasis
    Rusu-Both, Roxana
    Socaci, Cristian
    Palagos, Adrian
    2024 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION, QUALITY AND TESTING, ROBOTICS, AQTR, 2024, : 367 - 372
  • [9] Preoperative lymph node metastasis risk assessment in invasive micropapillary carcinoma of the breast: development of a machine learning-based predictive model with a web-based calculator
    Yan Zhang
    Nan Wang
    Yuxin Qiu
    Yingxiao Jiang
    Peiyan Qin
    Xiaoxiao Wang
    Yang Li
    Xiangdi Meng
    Furong Hao
    World Journal of Surgical Oncology, 23 (1)
  • [10] Sentinel Lymph Node Metastasis on Clinically Negative Patients: Preliminary Results of a Machine Learning Model Based on Histopathological Features
    Fanizzi, Annarita
    Lorusso, Vito
    Biafora, Albino
    Bove, Samantha
    Comes, Maria Colomba
    Cristofaro, Cristian
    Digennaro, Maria
    Didonna, Vittorio
    La Forgia, Daniele
    Nardone, Annalisa
    Pomarico, Domenico
    Tamborra, Pasquale
    Zito, Alfredo
    Paradiso, Angelo Virgilio
    Massafra, Raffaella
    APPLIED SCIENCES-BASEL, 2021, 11 (21):