Automated segmentation of 3D anatomical structures on CT images by using a deep convolutional network based on end-to-end learning approach

被引:13
|
作者
Zhou, Xiangrong [1 ]
Takayama, Ryosuke [1 ]
Wang, Song [2 ]
Zhou, Xinxin [3 ]
Hara, Takeshi [1 ]
Fujita, Hiroshi [1 ]
机构
[1] Gifu Univ, Grad Sch Med, Div Regenerat & Adv Med Sci, Dept Intelligent Image Informat, Gifu 5011194, Japan
[2] Univ South Carolina, Dept Comp Sci & Engn, Columbia, SC 29208 USA
[3] Nagoya Bunri Univ, Sch Informat Culture, 365 Maeda,Inazawa Cho, Inazawa 4928520, Japan
来源
MEDICAL IMAGING 2017: IMAGE PROCESSING | 2017年 / 10133卷
关键词
3D CT images; anatomical structures segmentation; deep learning; convolutional neural network; NEURAL-NETWORK; ENSEMBLE; NODULES; ORGANS;
D O I
10.1117/12.2254201
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We have proposed an end-to-end learning approach that trained a deep convolutional neural network (CNN) for automatic CT image segmentation, which accomplished a voxel-wised multiple classification to directly map each voxel on 3D CT images to an anatomical label automatically. The novelties of our proposed method were (1) transforming the anatomical structures segmentation on 3D CT images into a majority voting of the results of 2D semantic image segmentation on a number of 2D-slices from different image orientations, and (2) using "convolution" and "deconvolution" networks to achieve the conventional "coarse recognition" and "fine extraction" functions which were integrated into a compact all-in-one deep CNN for CT image segmentation. The advantage comparing to previous works was its capability to accomplish real-time image segmentations on 2D slices of arbitrary CT-scan-range (e.g. body, chest, abdomen) and produced correspondingly-sized output. In this paper, we propose an improvement of our proposed approach by adding an organ localization module to limit CT image range for training and testing deep CNNs. A database consisting of 240 3D CT scans and a human annotated ground truth was used for training (228 cases) and testing (the remaining 12 cases). We applied the improved method to segment pancreas and left kidney regions, respectively. The preliminary results showed that the accuracies of the segmentation results were improved significantly (pancreas was 34% and kidney was 8% increased in Jaccard index from our previous results). The effectiveness and usefulness of proposed improvement for CT image segmentations were confirmed.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] A fully end-to-end deep learning approach for real-time simultaneous 3D reconstruction and material recognition
    Zhao, Cheng
    Sun, Li
    Stolkin, Rustam
    2017 18TH INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS (ICAR), 2017, : 75 - 82
  • [32] Deep Learning Assisted End-to-End Synthesis of mm-Wave Passive Networks with 3D EM Structures: A Study on A Transformer-Based Matching Network
    Er, Siawpeng
    Liu, Edward
    Chen, Minshuo
    Li, Yan
    Liu, Yuqi
    Zhao, Tuo
    Wang, Hua
    2021 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS), 2021, : 66 - 69
  • [33] End-to-end video background subtraction with 3d convolutional neural networks
    Dimitrios Sakkos
    Heng Liu
    Jungong Han
    Ling Shao
    Multimedia Tools and Applications, 2018, 77 : 23023 - 23041
  • [34] Deep convolutional neural network for segmentation of thoracic organs-at-risk using cropped 3D images
    Feng, Xue
    Qing, Kun
    Tustison, Nicholas J.
    Meyer, Craig H.
    Chen, Quan
    MEDICAL PHYSICS, 2019, 46 (05) : 2169 - 2180
  • [35] 3D END-TO-END BOUNDARY-AWARE NETWORKS FOR PANCREAS SEGMENTATION
    Li, Ji
    Chen, Yinran
    Chen, Rong
    Shen, Dongfang
    Luo, Xiongbiao
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 2031 - 2035
  • [36] Security of End-to-End medical images encryption system using trained deep learning encryption and decryption network
    Inam, Saba
    Kanwal, Shamsa
    Anwar, Anousha
    Mirza, Noor Fatima
    Alfraihi, Hessa
    EGYPTIAN INFORMATICS JOURNAL, 2024, 28
  • [37] Deep learning-based automated segmentation of eight brain anatomical regions using head CT images in PET/CT
    Tong Wang
    Haiqun Xing
    Yige Li
    Sicong Wang
    Ling Liu
    Fang Li
    Hongli Jing
    BMC Medical Imaging, 22
  • [38] End-to-end diabetic retinopathy grading based on fundus fluorescein angiography images using deep learning
    Gao, Zhiyuan
    Jin, Kai
    Yan, Yan
    Liu, Xindi
    Shi, Yan
    Ge, Yanni
    Pan, Xiangji
    Lu, Yifei
    Wu, Jian
    Wang, Yao
    Ye, Juan
    GRAEFES ARCHIVE FOR CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 2022, 260 (05) : 1663 - 1673
  • [39] Deep learning-based automated segmentation of eight brain anatomical regions using head CT images in PET/CT
    Wang, Tong
    Xing, Haiqun
    Li, Yige
    Wang, Sicong
    Liu, Ling
    Li, Fang
    Jing, Hongli
    BMC MEDICAL IMAGING, 2022, 22 (01)
  • [40] Automatic Liver Segmentation with CT Images based on 3D U-net Deep Learning Approach
    Su, Ting-Yu
    Yang, Wei-Tse
    Cheng, Tsu-Chi
    He, Yi-Fei
    Fang, Yu-Hua
    INTERNATIONAL FORUM ON MEDICAL IMAGING IN ASIA 2019, 2019, 11050