Quantifying the Plasmonic Character of Optical Excitations in Nanostructures

被引:55
作者
Bursi, Luca [1 ,2 ]
Calzolari, Arrigo [2 ]
Corni, Stefano [2 ]
Molinari, Elisa [1 ,2 ]
机构
[1] Univ Modena & Reggio Emilia, Dipartimento Fis Informat & Matemat, I-41125 Modena, Italy
[2] Ist Nanosci CNR NANO S3, I-41125 Modena, Italy
来源
ACS PHOTONICS | 2016年 / 3卷 / 04期
关键词
definition of plasmons; atomistic modeling of optical excitations; molecular plasmons; metal clusters; graphene nanostructures; GRAPHENE PLASMONS; QUANTUM; NANOPLASMONICS; NANOPARTICLES; MOLECULES; CLUSTERS; SYSTEMS;
D O I
10.1021/acsphotonics.5b00688
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The microscopic definition of plasmons in nanosystems is a tremendous challenge. Any sharp distinction of the excitation nature (nonplasmonic vs plasmonic) becomes blurred at the nanoscale, where quantum effects become important. Here we introduce the concept of plasmonicity index, i.e., a direct measure of the plasmonic character of the optical excitations in nanosystems. Its definition is based on a rigorous theoretical derivation, which leads to the physically sound result that the plasmonicity index is related to the capability of enhancing locally an applied electromagnetic radiation. The proposed expression is general and can be applied to any finite system. We show its usefulness in modeling metallic nanoparticles, prototypical C-based molecules, and paradigmatic hybrid systems, starting from first-principles calculations, based on (TD)DFT. Our results represent a step forward in the fundamental understanding of what a plasmon is in nanometer-sized particles and molecular systems.
引用
收藏
页码:520 / 525
页数:6
相关论文
共 37 条
[1]   Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns [J].
Alonso-Gonzalez, P. ;
Nikitin, A. Y. ;
Golmar, F. ;
Centeno, A. ;
Pesquera, A. ;
Velez, S. ;
Chen, J. ;
Navickaite, G. ;
Koppens, F. ;
Zurutuza, A. ;
Casanova, F. ;
Hueso, L. E. ;
Hillenbrand, R. .
SCIENCE, 2014, 344 (6190) :1369-1373
[2]  
[Anonymous], 2003, QUANTUM THEORY MANY
[3]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/NMAT2629, 10.1038/nmat2629]
[4]   Atomistic Near-Field Nanoplasmonics: Reaching Atomic-Scale Resolution in Nanooptics [J].
Barbry, M. ;
Koval, P. ;
Marchesin, F. ;
Esteban, R. ;
Borisov, A. G. ;
Aizpurua, J. ;
Sanchez-Portal, D. .
NANO LETTERS, 2015, 15 (05) :3410-3419
[5]   Plasmons in Molecules [J].
Bernadotte, Stephan ;
Evers, Ferdinand ;
Jacob, Christoph R. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (04) :1863-1878
[6]   Light-Induced Field Enhancement in Nanoscale Systems from First-Principles: The Case of Polyacenes [J].
Bursi, Luca ;
Calzolari, Arrigo ;
Corni, Stefano ;
Molinari, Elisa .
ACS PHOTONICS, 2014, 1 (10) :1049-1058
[7]   Prediction of Structures and Atomization Energies of Small Silver Clusters, (Ag)n, n < 100 [J].
Chen, Mingyang ;
Dyer, Jason E. ;
Li, Keijing ;
Dixon, David A. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2013, 117 (34) :8298-8313
[8]   Plasmonic and new plasmonic materials: general discussion [J].
de Abajo, F. Javier Garcia ;
Sapienza, Riccardo ;
Noginov, Mikhail ;
Benz, Felix ;
Baumberg, Jeremy ;
Maier, Stefan ;
Graham, Duncan ;
Aizpurua, Javier ;
Ebbesen, Thomas ;
Pinchuk, Anatoliy ;
Khurgin, Jacob ;
Matczyszyn, Katarzyna ;
Hugall, James T. ;
van Hulst, Niek ;
Dawson, Paul ;
Roberts, Christopher ;
Nielsen, Michael ;
Bursi, Luca ;
Flatte, Michael ;
Yi, Jun ;
Hess, Ortwin ;
Engheta, Nader ;
Brongersma, Mark ;
Podolskiy, Viktor ;
Shalaev, Vladimir ;
Narimanov, Evgenii ;
Zayats, Anatoly .
FARADAY DISCUSSIONS, 2015, 178 :123-149
[9]  
Della Sala F., 2013, Handbook of Molecular Plasmonics
[10]   EXCITONS AND PLASMONS IN METALS, SEMICONDUCTORS AND INSULATORS - A UNIFIED APPROACH [J].
EGRI, I .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1985, 119 (06) :363-402