Spin-foams for all loop quantum gravity

被引:130
作者
Kaminski, Wojciech [1 ]
Kisielowski, Marcin [1 ]
Lewandowski, Jerzy [1 ,2 ,3 ]
机构
[1] Uniwersytet Warszawski, Inst Fiz Teoret, PL-00681 Warsaw, Poland
[2] Inst Gravitat & Cosmos, University Pk, PA 16802 USA
[3] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
BLACK-HOLE ENTROPY; GEOMETRY; MODELS; VERTEX;
D O I
10.1088/0264-9381/27/9/095006
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The simplicial framework of Engle-Pereira-Rovelli-Livine spin-foam models is generalized to match the diffeomorphism invariant framework of loop quantum gravity. The simplicial spin-foams are generalized to arbitrary linear 2-cell spin-foams. The resulting framework admits all the spin-network states of loop quantum gravity, not only those defined by triangulations (or cubulations). In particular, the notion of embedded spin-foam we use allows us to consider knotting or linking spin-foam histories. Also the main tools, the vertex structure and the vertex amplitude, are naturally generalized to an arbitrary valency case. The correspondence between all the SU(2) intertwiners and the SU(2)xSU(2) EPRL intertwiners is proved to be 1-1 in the case of the Barbero-Immirzi parameter |gamma| >= 1.
引用
收藏
页数:24
相关论文
共 50 条
[1]  
ALESCI E, 2008, ARXIV08125018
[2]   Complete LQG propagator: Difficulties with the barrett-crane vertex [J].
Alesci, Emanuele ;
Rovelli, Carlo .
PHYSICAL REVIEW D, 2007, 76 (10)
[3]   DIFFERENTIAL GEOMETRY ON THE SPACE OF CONNECTIONS VIA GRAPHS AND PROJECTIVE-LIMITS [J].
ASHTEKAR, A ;
LEWANDOWSKI, J .
JOURNAL OF GEOMETRY AND PHYSICS, 1995, 17 (03) :191-230
[4]   Background independent quantum giravity: a status report [J].
Ashtekar, A ;
Lewandowski, J .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (15) :R53-R152
[5]   Quantum theory of geometry: I. Area operators [J].
Ashtekar, A ;
Lewandowski, J .
CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (1A) :A55-A81
[6]   Quantum geometry and black hole entropy [J].
Ashtekar, A ;
Baez, J ;
Corichi, A ;
Krasnov, K .
PHYSICAL REVIEW LETTERS, 1998, 80 (05) :904-907
[7]  
Ashtekar A., 1998, Adv. Theor. Math. Phys, V1, P388, DOI DOI 10.4310/ATMP.1997.V1.N2.A8
[8]  
Ashtekar A, 2000, ADV THEOR MATH PHYS, V4
[9]  
Baez JC, 2000, LECT NOTES PHYS, V543, P25
[10]  
BAHR B, 2009, ARXIV09074323