LOCAL REGULARITY RESULT IN OBSTACLE PROBLEMS

被引:0
作者
Gao Hongya [1 ,2 ]
Guo Jing [1 ]
Zuo Yali [3 ]
Chu Yuming [4 ]
机构
[1] Hebei Univ, Coll Math & Comp Sci, Baoding 071002, Peoples R China
[2] Hebei Prov Ctr Math, Shijiazhuang 050016, Peoples R China
[3] Chengde Teachers Coll Nationalities, Dept Math, Chengde 067000, Peoples R China
[4] Huzhou Teachers Coll, Fac Sci, Huzhou 313000, Peoples R China
关键词
local regularity; A-harmonic equation; obstacle problem; MINIMA;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain a local regularity result for solutions to K(psi,theta)-obstacle problem of A-harmonic equation divA(x,u(x),del u(x)) = 0, where A : Omega x R x R(n) -> R(n) is a Caratheodory function satisfying some coercivity and growth conditions with the natural exponent 1 < p < n, the obstacle function psi >= 0, and the boundary data theta is an element of W(1,p)(Omega).
引用
收藏
页码:208 / 214
页数:7
相关论文
共 8 条
[1]  
[高红亚 Gao Hongya], 2009, [数学物理学报. A辑, Acta Mathematica Scientia], V29, P1291
[2]   Local regularity result for solutions of obstacle problems [J].
Gao, HY ;
Tian, HY .
ACTA MATHEMATICA SCIENTIA, 2004, 24 (01) :71-74
[3]   Local regularity results for minima of functionals of the Calculus of Variation [J].
Giachetti, D ;
Porzio, MM .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 39 (04) :463-482
[4]   ON THE REGULARITY OF THE MINIMA OF VARIATIONAL INTEGRALS [J].
GIAQUINTA, M ;
GIUSTI, E .
ACTA MATHEMATICA, 1982, 148 :31-46
[5]  
Giaquinta M., 1983, MULTIPLE INTEGRALS C
[6]  
Gilbarg D., 1983, ELLIPTIC PARTIAL DIF, V2nd
[7]  
LI GB, 1994, ANN ACAD SCI FENN-M, V19, P25
[8]   SOME RESULTS ON REGULARITY FOR SOLUTIONS OF NONLINEAR ELLIPTIC SYSTEMS AND QUASI-REGULAR FUNCTIONS [J].
MEYERS, NG ;
ELCRAT, A .
DUKE MATHEMATICAL JOURNAL, 1975, 42 (01) :121-136