Trajectory Synthesis for Fisher Information Maximization

被引:29
作者
Wilson, Andrew D. [1 ]
Schultz, Jarvis A. [1 ]
Murphey, Todd D. [1 ]
机构
[1] Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
Maximum likelihood estimation; optimal control; parameter estimation; OPTIMAL EXPERIMENTAL-DESIGN; PARAMETER-ESTIMATION; EXCITATION TRAJECTORIES; DYNAMIC IDENTIFICATION; EXCITING TRAJECTORIES; INERTIAL PARAMETERS; ROBOT EXCITATION; INPUT-DESIGN; SYSTEMS;
D O I
10.1109/TRO.2014.2345918
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Estimation of model parameters in a dynamic system can be significantly improved with the choice of experimental trajectory. For general nonlinear dynamic systems, finding globally "best" trajectories is typically not feasible; however, given an initial estimate of the model parameters and an initial trajectory, we present a continuous-time optimization method that produces a locally optimal trajectory for parameter estimation in the presence of measurement noise. The optimization algorithm is formulated to find system trajectories that improve a norm on the Fisher information matrix (FIM). A double-pendulum cart apparatus is used to numerically and experimentally validate this technique. In simulation, the optimized trajectory increases the minimum eigen-value of the FIM by three orders of magnitude, compared with the initial trajectory. Experimental results show that this optimized trajectory translates to an order-of-magnitude improvement in the parameter estimate error in practice.
引用
收藏
页码:1358 / 1370
页数:13
相关论文
共 37 条
[1]  
[Anonymous], 1999, SYSTEM IDENTIFICATIO
[2]  
[Anonymous], WORLD C
[5]   OPTIMAL EXPERIMENTAL-DESIGN FOR PARAMETER-ESTIMATION IN UNSTRUCTURED GROWTH-MODELS [J].
BALTES, M ;
SCHNEIDER, R ;
STURM, C ;
REUSS, M .
BIOTECHNOLOGY PROGRESS, 1994, 10 (05) :480-488
[6]  
Bar-Shalom Y., 2004, ESTIMATION APPL TRAC
[7]   A-priori Fisher Information of Nonlinear State Space Models for Experiment Design [J].
Dietrich, Franz ;
Raatz, Annika ;
Hesselbach, Juergen .
2010 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2010, :3698-3702
[8]   Optimal experiment design [J].
Emery, AF ;
Nenarokomov, AV .
MEASUREMENT SCIENCE AND TECHNOLOGY, 1998, 9 (06) :864-876
[9]   Simulation methods for optimal experimental design in systems biology [J].
Faller, D ;
Klingmüller, U ;
Timmer, J .
SIMULATION-TRANSACTIONS OF THE SOCIETY FOR MODELING AND SIMULATION INTERNATIONAL, 2003, 79 (12) :717-725
[10]   Identification of dynamic parameters of a 3-DOF RPS parallel manipulator [J].
Farhat, Nidal ;
Mata, Vicente ;
Page, Alvaro ;
Valero, Francisco .
MECHANISM AND MACHINE THEORY, 2008, 43 (01) :1-17