Hamiltonian jump graphs

被引:9
作者
Wu, BYDR [1 ]
Meng, JX
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Xinjiang, Peoples R China
[2] Chinese Acad Sci, Inst Syst Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
基金
中国国家自然科学基金;
关键词
jump graph; line graph; Hamilton cycle;
D O I
10.1016/j.disc.2004.09.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a nonempty graph. The jump graph J (G) of G is the graph whose vertices are edges of G, and where two vertices of J(G) are adjacent if and only if they are not adjacent in G. Equivalently, the jump graph J(G) of G is the complement of line graph L(G) of G. In this paper, we characterize hamiltonian jump graphs and settle two conjectures posed by Chartrand et al. on jump graphs. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:95 / 106
页数:12
相关论文
共 6 条
[1]  
Bondy J.A., 2008, GRAD TEXTS MATH
[2]   METHOD IN GRAPH THEORY [J].
BONDY, JA ;
CHVATAL, V .
DISCRETE MATHEMATICS, 1976, 15 (02) :111-135
[3]   Subgraph distances in graphs defined by edge transfers [J].
Chartrand, G ;
Hevia, H ;
Jarrett, EB ;
Schultz, M .
DISCRETE MATHEMATICS, 1997, 170 (1-3) :63-79
[4]  
Chvatal V., 1972, DISCRETE MATH, V2, P111, DOI DOI 10.1016/0012-365X(72)90079-9
[5]  
Harary F., 1965, CANAD MATH B, V8, P701, DOI DOI 10.4153/CMB-1965-051-3
[6]  
Ore O., 1960, AM MATH MONTHLY, V67, P55, DOI DOI 10.2307/2308928