The multiple Dirichlet product and the multiple Dirichlet series

被引:2
作者
Onozuka, Tomokazu [1 ]
机构
[1] Toyota Technol Inst, Tempaku Ku, 2-12-1 Hisakata, Nagoya, Aichi 4688511, Japan
关键词
Multiple zeta function; multiple zeta star function; multiple Dirichlet series; multiple Dirichlet product; multiple Dirichlet convolution; zero-free region; ANALYTIC CONTINUATION;
D O I
10.1142/S1793042117501184
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
First, we define the multiple Dirichlet product and study the properties of it. From those properties, we obtain a zero-free region of a multiple Dirichlet series and a multiple Dirichlet series expression of the reciprocal of a multiple Dirichlet series.
引用
收藏
页码:2181 / 2193
页数:13
相关论文
共 11 条
[1]  
Akiyama S, 2002, DEV MATH, V6, P1
[2]   Analytic continuation of multiple zeta-functions and their values at non-positive integers [J].
Akiyama, S ;
Egami, S ;
Tanigawa, Y .
ACTA ARITHMETICA, 2001, 98 (02) :107-116
[3]  
[Anonymous], 2003, Journal de Theorie des Nombres de Bordeaux
[4]  
Cashwell E.D., 1959, Pacific J. Math, V9, P975, DOI DOI 10.2140/PJM.1959.9.975
[5]   Estimation of multiple sums of arithmetical functions [J].
De la Bretèche, R .
COMPOSITIO MATHEMATICA, 2001, 128 (03) :261-298
[6]   MULTIPLE HARMONIC SERIES [J].
HOFFMAN, ME .
PACIFIC JOURNAL OF MATHEMATICS, 1992, 152 (02) :275-290
[7]  
Matsumoto K, 2002, NUMBER THEORY FOR THE MILLENNIUM II, P417
[8]  
Matsumoto K., 2003, BONN MATH SCHR, V360
[9]  
SPIRA R, 1965, J LONDON MATH SOC, V40, P677
[10]  
Toth L., 2013, ARXIV13107053