Nanotechnology for Boosting Cancer Immunotherapy and Remodeling Tumor Microenvironment: The Horizons in Cancer Treatment

被引:183
作者
Gao, Shan [1 ]
Yang, Xiaoye [1 ]
Xu, Jiangkang [1 ]
Qiu, Na [1 ]
Zhai, Guangxi [1 ]
机构
[1] Shandong Univ, Sch Pharmaceut Sci, Dept Pharmaceut, Jinan 250012, Peoples R China
关键词
immunotherapy; nanotechnology; immune defense; immune suppression; tumor microenvironment; smart nanomedicine; tumor immunoediting; tumor treatment; ANTIGEN-PRESENTING CELLS; NATURAL-KILLER-CELLS; T-CELL; DRUG-DELIVERY; EXTRACELLULAR-MATRIX; CROSS-PRESENTATION; TARGETED DELIVERY; SUPPRESSOR-CELLS; NANOPARTICLES; THERAPY;
D O I
10.1021/acsnano.1c02103
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Immunotherapy that harnesses the human immune system to fight cancer has received widespread attention and become a mainstream strategy for cancer treatment. Cancer immunotherapy not only eliminates primary tumors but also treats metastasis and recurrence, representing a major advantage over traditional cancer treatments. Recently with the development of nanotechnology, there exists much work applying nanomaterials to cancer immunotherapy on the basis of their excellent physiochemical properties, such as efficient tissue-specific delivery function, huge specific surface area, and controllable surface chemistry. Consequently, nanotechnology holds significant potential in improving the efficacy of cancer immunotherapy. Nanotechnology-based immunotherapy mainly manifests its inhibitory effect on tumors via two different approaches: one is to produce an effective anti-tumor immune response during tumorigenesis, and the other is to enhance tumor immune defense ability by modulating the immune suppression mechanism in the tumor microenvironment. With the success of tumor immunotherapy, understanding the interaction between the immune system and smart nanomedicine has provided vigorous vitality for the development of cancer treatment. This review highlights the application, progress, and prospect of nanomedicine in the process of tumor immunoediting and also discusses several engineering methods to improve the efficiency of tumor treatment.
引用
收藏
页码:12567 / 12603
页数:37
相关论文
共 282 条
[1]   Rethinking Extended Adjuvant Antiestrogen Therapy to Increase Survivorship in Breast Cancer [J].
Abderrahman, Balkees ;
Jordan, V. Craig .
JAMA ONCOLOGY, 2018, 4 (01) :15-16
[2]   Nano-therapeutics for modulating the tumour microenvironment: Design, development, and clinical translation [J].
Adityan, Siddharth ;
Tran, Michelle ;
Bhavsar, Chintan ;
Wu, Sherry Y. .
JOURNAL OF CONTROLLED RELEASE, 2020, 327 :512-532
[3]   A three-dimensional hyaluronic acid-based niche enhances the therapeutic efficacy of human natural killer cell-based cancer immunotherapy [J].
Ahn, Young Ha ;
Ren, Long ;
Kim, Seok Min ;
Seo, Sang-Hwan ;
Jung, Cho-Rok ;
Kim, Da Seul ;
Noh, Ji-Yoon ;
Lee, Soo Yun ;
Lee, Hyunseung ;
Cho, Mi Young ;
Jung, Haiyoung ;
Yoon, Suk Ran ;
Kim, Jung-Eun ;
Lee, Sang Nam ;
Kim, Sohyun ;
Shin, Il Woo ;
Shin, Hong Sik ;
Hong, Kwan Soo ;
Lim, Yong Taik ;
Choi, Inpyo ;
Kim, Tae-Don .
BIOMATERIALS, 2020, 247
[4]   T-cell trafficking plays an essential role in tumor immunity [J].
Aires, Daniel J. ;
Yoshida, Masaru ;
Richardson, Stephen K. ;
Bai, Mei ;
Liu, Luzheng ;
Moreno, Roberto ;
Lazar, Alexander J. F. ;
Wick, Jo A. ;
Rich, Benjamin E. ;
Murphy, George ;
Blumberg, Richard S. ;
Fuhlbrigge, Robert C. ;
Kupper, Thomas S. .
LABORATORY INVESTIGATION, 2019, 99 (01) :85-92
[5]   The European Medicines Agency Review of Kymriah (Tisagenlecleucel) for the Treatment of Acute Lymphoblastic Leukemia and Diffuse Large B-Cell Lymphoma [J].
Ali, Sahra ;
Kjeken, Rune ;
Niederlaender, Christiane ;
Markey, Greg ;
Saunders, Therese S. ;
Opsata, Mona ;
Moltu, Kristine ;
Bremnes, Bjorn ;
Gronevik, Eirik ;
Muusse, Martine ;
Hakonsen, Gro D. ;
Skibeli, Venke ;
Kalland, Maria Elisabeth ;
Wang, Ingrid ;
Buajordet, Ingebjorg ;
Urbaniak, Ania ;
Johnston, John ;
Rantell, Khadija ;
Kerwash, Essam ;
Schuessler-Lenz, Martina ;
Salmonson, Tomas ;
Bergh, Jonas ;
Gisselbrecht, Christian ;
Tzogani, Kyriaki ;
Papadouli, Irene ;
Pignatti, Francesco .
ONCOLOGIST, 2020, 25 (02) :E321-E327
[6]   Selective interaction of PEGylated polyglutamic acid nanocapsules with cancer cells in a 3D model of a metastatic lymph node [J].
Alonso-Nocelo, Marta ;
Abellan-Pose, Raquel ;
Vidal, Anxo ;
Abal, Miguel ;
Csaba, Noemi ;
Jose Alonso, Maria ;
Lopez-Lopez, Rafael ;
de la Fuente, Maria .
JOURNAL OF NANOBIOTECHNOLOGY, 2016, 14
[7]   Contemporary experience with high-dose interleukin-2 therapy and impact on survival in patients with metastatic melanoma and metastatic renal cell carcinoma [J].
Alva, Ajjai ;
Daniels, Gregory A. ;
Wong, Michael K. K. ;
Kaufman, Howard L. ;
Morse, Michael A. ;
McDermott, David F. ;
Clark, Joseph I. ;
Agarwala, Sanjiv S. ;
Miletello, Gerald ;
Logan, Theodore F. ;
Hauke, Ralph J. ;
Curti, Brendan ;
Kirkwood, John M. ;
Gonzalez, Rene ;
Amin, Asim ;
Fishman, Mayer ;
Agarwal, Neeraj ;
Lowder, James N. ;
Hua, Hong ;
Aung, Sandra ;
Dutcher, Janice P. .
CANCER IMMUNOLOGY IMMUNOTHERAPY, 2016, 65 (12) :1533-1544
[8]   Obstacles Posed by the Tumor Microenvironment to T cell Activity: A Case for Synergistic Therapies [J].
Anderson, Kristin G. ;
Stromnes, Ingunn M. ;
Greenberg, Philip D. .
CANCER CELL, 2017, 31 (03) :311-325
[9]   Programmed Death-1 Blockade With Pembrolizumab in Patients With Classical Hodgkin Lymphoma After Brentuximab Vedotin Failure [J].
Armand, Philippe ;
Shipp, Margaret A. ;
Ribrag, Vincent ;
Michot, Jean-Marie ;
Zinzani, Pier Luigi ;
Kuruvilla, John ;
Snyder, Ellen S. ;
Ricart, Alejandro D. ;
Balakumaran, Arun ;
Rose, Shelonitda ;
Moskowitz, Craig H. .
JOURNAL OF CLINICAL ONCOLOGY, 2016, 34 (31) :3733-+
[10]   Tumor Cells and Tumor-Associated Macrophages: Secreted Proteins as Potential Targets for Therapy [J].
Baay, Marc ;
Brouwer, Anja ;
Pauwels, Patrick ;
Peeters, Marc ;
Lardon, Filip .
CLINICAL & DEVELOPMENTAL IMMUNOLOGY, 2011,