Broadband external cavity tunable quantum dot lasers with low injection current density

被引:29
作者
Lv, X. Q. [1 ]
Jin, P. [1 ]
Wang, W. Y. [1 ]
Wang, Z. G. [1 ]
机构
[1] Chinese Acad Sci, Inst Semicond, Key Lab Semicond Mat Sci, Beijing 100083, Peoples R China
来源
OPTICS EXPRESS | 2010年 / 18卷 / 09期
基金
中国国家自然科学基金;
关键词
LIGHT-EMITTING-DIODES; NM TUNING RANGE; SUPERLUMINESCENT DIODES; WELL LASER; EMISSION; SPECTROSCOPY; SPECTRUM;
D O I
10.1364/OE.18.008916
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Broadband grating-coupled external cavity laser, based on InAs/GaAs quantum dots, is achieved. The device has a wavelength tuning range from 1141.6 nm to 1251.7 nm under a low continuous-wave injection current density (458 A/cm(2)). The tunable bandwidth covers consecutively the light emissions from both the ground state and the 1st excited state of quantum dots. The effects of cavity length and antireflection facet coating on device performance are studied. It is shown that antireflection facet coating expands the tuning bandwidth up to similar to 150 nm, accompanied by an evident increase in threshold current density, which is attributed to the reduced interaction between the light field and the quantum dots in the active region of the device. (C) 2010 Optical Society of America
引用
收藏
页码:8916 / 8922
页数:7
相关论文
共 50 条
  • [21] Low-threshold, high SMSR tunable external cavity quantum cascade laser around 4.7 μm
    Tan, S.
    Zhang, J. C.
    Zhuo, N.
    Wang, L. J.
    Liu, F. Q.
    Yao, D. Y.
    Liu, J. Q.
    Wang, Z. G.
    OPTICAL AND QUANTUM ELECTRONICS, 2013, 45 (11) : 1147 - 1155
  • [22] Broadband External Cavity Quantum Cascade Laser Based Sensor for Gasoline Detection
    Ding, Junya
    He, Tianbo
    Zhou, Sheng
    Li, Jingsong
    FOURTH SEMINAR ON NOVEL OPTOELECTRONIC DETECTION TECHNOLOGY AND APPLICATION, 2018, 10697
  • [23] Mid-IR Sensing Using External Cavity Quantum Cascade Lasers
    Day, Timothy
    Weida, Miles J.
    Arnone, David
    Pushkarsky, Michael
    Buerki, Peter
    Caffey, Dave
    Cook, Vince
    Takeuchi, Eric B.
    NEXT-GENERATION SPECTROSCOPIC TECHNOLOGIES III, 2010, 7680
  • [24] Research on Mid-Infrared External Cavity Quantum Cascade Lasers and Applications
    Ma, Yuhang
    Ding, Keke
    Wei, Long
    Li, Xuan
    Shi, Junce
    Li, Zaijin
    Qu, Yi
    Li, Lin
    Qiao, Zhongliang
    Liu, Guojun
    Zeng, Lina
    Xu, Dongxin
    CRYSTALS, 2022, 12 (11)
  • [25] Intra-cavity frequency doubling in photonic crystal nanocavity quantum dot lasers
    Ota, Yasutomo
    Watanabe, Katsuyuki
    Iwamoto, Satoshi
    Arakawa, Yasuhiko
    2012 IEEE PHOTONICS CONFERENCE (IPC), 2012, : 610 - 611
  • [26] Colloidal Silicon Quantum Dot-Based Cavity Light-Emitting Diodes with Narrowed and Tunable Electroluminescence
    Cheong, I. Teng
    Mock, Josef
    Kallergi, Maria
    Gross, Elisabeth
    Meldrum, Alkiviathes
    Rieger, Bernhard
    Becherer, Markus
    Veinot, Jonathan G. C.
    ADVANCED OPTICAL MATERIALS, 2023, 11 (01)
  • [27] Low-Threshold, External-Cavity-Free Flexible Perovskite Lasers
    Cao, Xuhui
    Xing, Shiyu
    Lai, Runchen
    Lian, Yaxiao
    Wang, Yaxin
    Xu, Jiying
    Zou, Chen
    Zhao, Baodan
    Di, Dawei
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (19)
  • [28] Tunable colloidal quantum dot distributed feedback lasers integrated on a continuously chirped surface grating
    Jung, Hyunho
    Han, Changhyun
    Kim, Hanbit
    Cho, Kyung-Sang
    Roh, Young-Geun
    Park, Yeonsang
    Jeon, Heonsu
    NANOSCALE, 2018, 10 (48) : 22745 - 22749
  • [29] Analysis of ground state spectral splitting of quantum dot lasers aimed for tunable terahertz generation
    Lin, Zhiyuan
    Yuan, Guohui
    Wang, Zhuoran
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2016, 33 (10) : 2114 - 2119
  • [30] Quantum dot vertical-cavity surface-emitting lasers covering the 'green gap'
    Mei, Yang
    Weng, Guo-En
    Zhang, Bao-Ping
    Liu, Jian-Ping
    Hofmann, Werner
    Ying, Lei-Ying
    Zhang, Jiang-Yong
    Li, Zeng-Cheng
    Yang, Hui
    Kuo, Hao-Chung
    LIGHT-SCIENCE & APPLICATIONS, 2017, 6 : e16199 - e16199