Stable silver nanoclusters electrochemically deposited on nitrogen-doped graphene as efficient electrocatalyst for oxygen reduction reaction

被引:68
作者
Jin, Shi [1 ]
Chen, Man [2 ]
Dong, Haifeng [1 ]
He, Bingyu [1 ]
Lu, Huiting [3 ]
Su, Lei [1 ]
Dai, Wenhao [1 ]
Zhang, Qiaochu [4 ]
Zhang, Xueji [1 ]
机构
[1] Univ Sci & Technol Beijing, Beijing Key Lab Bioengn & Sensing Technol, Beijing 100083, Peoples R China
[2] Huazhong Univ Sci & Technol, Inst Liver Dis, Tongji Hosp, Tongji Med Coll, Wuhan 430030, Peoples R China
[3] Beijing Univ Aeronaut & Astronaut, Dept Environm Sci & Engn, Sch Chem & Environm, Beijing 100083, Peoples R China
[4] Rice Univ, Dept Bioengn, George R Brown Sch Engn, Houston, TX 77251 USA
基金
中国国家自然科学基金;
关键词
Nitrogen-doped graphene; Silver nanoclusters; Oxygen reduction reaction; Fuel cell catalyst; FUEL-CELLS; LABEL-FREE; OXIDE; CLUSTERS; CATALYST; DESIGN; TRACE;
D O I
10.1016/j.jpowsour.2014.10.098
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Metal nanoclusters exhibit unusually high catalytic activity toward oxygen reduction reaction (ORR) due to their small size and unique electronic structures. However, controllable synthesis of stable metal nanoclusters is a challenge, and the durability of metal clusters suffers from the deficiency of dissolution, aggregation, and sintering during catalysis reactions. Herein, silver nanoclusters (AgNCs) (diameter < 2 nm) were controllably electrochemically reduced on nitrogen-doped graphene (NG) using effective single-stranded oligonucleotide sequences (ssDNA) as the performed template in absence of any other reluctant. The ssDNA is significant for providing AgNCs with growth template and anchoring the cluster on graphene surface. The strong interaction between the AgNCs, ssDNA and NG renders the as-synthesized AgNCs/NG composite with high-performance onset potential, half-wave potential and mass activity for ORR approaching to commercial Pt/C catalyst, and remarkably superior ORR performance than NG and Ag nanoparticle/NG. Importantly, the AgNCs/NG composite shows excellent methanol tolerance and accelerated electrochemical stability (8000 cycles), which is vital in high performance fuel cells, batteries and nanodevices. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1173 / 1179
页数:7
相关论文
共 50 条
  • [1] Titanium Nitride Nanocrystals on Nitrogen-Doped Graphene as an Efficient Electrocatalyst for Oxygen Reduction Reaction
    Liu, Mengjia
    Dong, Youzhen
    Wu, Yongmin
    Feng, Hongbin
    Li, Jinghong
    CHEMISTRY-A EUROPEAN JOURNAL, 2013, 19 (44) : 14781 - 14786
  • [2] MoS2/Nitrogen-doped graphene as efficient electrocatalyst for oxygen reduction reaction
    Zhao, Kai
    Gu, Wei
    Zhao, Longyun
    Zhang, Cuiling
    Peng, Weidong
    Xian, Yuezhong
    ELECTROCHIMICA ACTA, 2015, 169 : 142 - 149
  • [3] Silver cluster supported on nitrogen-doped graphene as an electrocatalyst with high activity and stability for oxygen reduction reaction
    Jalili, Seifollah
    Goliaei, Elham Moharramzadeh
    Schofield, Jeremy
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (21) : 14522 - 14533
  • [4] Facile preparation of nitrogen-doped graphene as an efficient oxygen reduction electrocatalyst
    Gao, Xiaochun
    Wang, Liwei
    Ma, Jizhen
    Wang, Yueqing
    Zhang, Jintao
    INORGANIC CHEMISTRY FRONTIERS, 2017, 4 (09): : 1582 - 1590
  • [5] Nitrogen-doped graphene wrapped around silver nanowires for enhanced catalysis in oxygen reduction reaction
    Ji, Dan
    Wang, Yao
    Chen, Siguo
    Zhang, Yuanliang
    Li, Li
    Ding, Wei
    Wei, Zidong
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2018, 22 (07) : 2287 - 2296
  • [6] Nanodiamond/nitrogen-doped graphene (core/shell) as an effective and stable metal-free electrocatalyst for oxygen reduction reaction
    Dong, Liang
    Zang, Jianbing
    Su, Jing
    Jia, Yingdan
    Wang, Yanhui
    Lu, Jing
    Xu, Xipeng
    ELECTROCHIMICA ACTA, 2015, 174 : 1017 - 1022
  • [7] Facile synthesis of boron and nitrogen-doped graphene as efficient electrocatalyst for the oxygen reduction reaction in alkaline media
    Xu, Xiao
    Yuan, Tao
    Zhou, Yingke
    Li, Yawei
    Lu, Jiming
    Tian, Xiaohui
    Wang, Deli
    Wang, Jie
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (28) : 16043 - 16052
  • [8] Nitrogen-doped carbon layer coated CeNiOx as electrocatalyst for oxygen reduction reaction
    Jing, Wangli
    Wang, Wei
    Yang, Yan
    Wang, Yahui
    Niu, Xiaobo
    Lei, Ziqiang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 761 : 8 - 14
  • [9] 3D cobalt-embedded nitrogen-doped graphene xerogel as an efficient electrocatalyst for oxygen reduction reaction in an alkaline medium
    Yu, Dingling
    He, Xingquan
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2017, 47 (01) : 13 - 23
  • [10] Nitrogen-Doped Graphene with Pyridinic Dominance as a Highly Active and Stable Electrocatalyst for Oxygen Reduction
    Wu, Jingjie
    Ma, Lulu
    Yadav, Ram Manohar
    Yang, Yingchao
    Zhang, Xiang
    Vajtai, Robert
    Lou, Jun
    Ajayan, Pulickel M.
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (27) : 14763 - 14769