Vision-Based Measurement: Actualities and Developing Trends in Automated Container Terminals

被引:53
作者
Mi, Chao [1 ]
Huang, Yage [2 ]
Fu, Changhong [3 ,4 ]
Zhang, Zhiwei [5 ]
Postolache, Octavian [6 ,7 ]
机构
[1] Shanghai Maritime Univ, Container Supply Chain Technol Engn Res Ctr, Minist Educ, Shanghai, Peoples R China
[2] Shanghai Maritime Univ, Logist Engn Sch, Mechatron Engn, Shanghai, Peoples R China
[3] Tongji Univ, Sch Mech Engn, Shanghai, Peoples R China
[4] Nanyang Technol Univ, Singapore, Singapore
[5] Shanghai SMUVis Smart Technol Ltd, Shanghai, Peoples R China
[6] ISCTE Lisbon Univ Inst, Habilitat, Lisbon, Portugal
[7] Inst Telecommun, Lisbon, Portugal
关键词
Industries; Image recognition; Target recognition; Transportation; Containers; Market research; Throughput;
D O I
10.1109/MIM.2021.9448257
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An automated container terminal (ACT) is a cutting-edge type of container terminal that uses automated equipment and sensors to achieve autonomous applications such as container loading/unloading, horizontal transportation, and yard operations. It has integrated state-of-the-art sensing technologies, ensuring low operating costs, high throughput capacity, and enhanced management security. Vision-based measurement (VBM) is an especially advanced technology that obtains richer surrounding information from captured image data in comparison with other technologies. Due to its great potential capabilities, it has played a critically important role in ACT to realize productive vision-based tasks, e.g., target recognition, positioning, and geometric determination. This paper generally presents an overview of a VBM system, typical applications of VBM systems in ACT, as well as the challenges and future development trends of VBM in ACT.
引用
收藏
页码:65 / 76
页数:12
相关论文
共 18 条
[1]  
[Anonymous], 2020, GLOB AUT CONT TERM M
[2]  
[Anonymous], 2005 IEEE COMPUTER S, DOI DOI 10.1109/CVPR.2005.177
[3]  
Baum Mathias, 2007, 2007 IEEE Intelligent Transportation Systems Conference, P950, DOI 10.1109/ITSC.2007.4357657
[4]   SUPPORT-VECTOR NETWORKS [J].
CORTES, C ;
VAPNIK, V .
MACHINE LEARNING, 1995, 20 (03) :273-297
[5]   VisDrone-DET2019: The Vision Meets Drone Object Detection in Image Challenge Results [J].
Du, Dawei ;
Zhu, Pengfei ;
Wen, Longyin ;
Bian, Xiao ;
Ling, Haibin ;
Hu, Qinghua ;
Peng, Tao ;
Zheng, Jiayu ;
Wang, Xinyao ;
Zhang, Yue ;
Bo, Liefeng ;
Shi, Hailin ;
Zhu, Rui ;
Kumar, Aashish ;
Li, Aijin ;
Zinollayev, Almaz ;
Askergaliyev, Anuar ;
Schumann, Arne ;
Mao, Binjie ;
Lee, Byeongwon ;
Liu, Chang ;
Chen, Changrui ;
Pan, Chunhong ;
Huo, Chunlei ;
Yu, Da ;
Cong, Dechun ;
Zeng, Dening ;
Pailla, Dheeraj Reddy ;
Li, Di ;
Wang, Dong ;
Cho, Donghyeon ;
Zhang, Dongyu ;
Bai, Furui ;
Jose, George ;
Gao, Guangyu ;
Liu, Guizhong ;
Xiong, Haitao ;
Qi, Hao ;
Wang, Haoran ;
Qiu, Heqian ;
Li, Hongliang ;
Lu, Huchuan ;
Kim, Ildoo ;
Kim, Jaekyum ;
Shen, Jane ;
Lee, Jihoon ;
Ge, Jing ;
Xu, Jingjing ;
Zhou, Jingkai ;
Meier, Jonas .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, :213-226
[6]  
Galvez RL, 2018, TENCON IEEE REGION, P2023, DOI 10.1109/TENCON.2018.8650517
[7]   Scalable Embedded Systems: Towards the Convergence of High-Performance and Embedded Computing [J].
Giorgi, Roberto .
PROCEEDINGS IEEE/IFIP 13TH INTERNATIONAL CONFERENCE ON EMBEDDED AND UBIQUITOUS COMPUTING 2015, 2015, :148-153
[8]   OPERATOR WHICH LOCATES EDGES IN DIGITIZED PICTURES [J].
HUECKEL, MH .
JOURNAL OF THE ACM, 1971, 18 (01) :113-&
[9]   Distributed Multi-Target Tracking and Data Association in Vision Networks [J].
Kamal, Ahmed T. ;
Bappy, Jawadul H. ;
Farrell, Jay A. ;
Roy-Chowdhury, Amit K. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (07) :1397-1410
[10]  
Prakash JS, 2012, 2012 INTERNATIONAL CONFERENCE ON MACHINE VISION AND IMAGE PROCESSING (MVIP), P197, DOI 10.1109/MVIP.2012.6428794