Realization and computational analysis of splitting in higher order optical vortices

被引:2
作者
Upadhaya, P. [1 ]
Prakash, Deo [2 ]
Shaaban, E. R. [3 ]
Al-Douri, Y. [4 ,5 ]
Khenata, R. [6 ]
Reshak, A. H. [7 ,8 ]
Darroudi, Majid [9 ]
Verma, K. D. [10 ]
机构
[1] Indian Inst Technol Delhi, New Delhi 110016, India
[2] SMVD Univ, Fac Engn, Sch Comp Sci & Engn, Katra 182320, Jammu & Kashmir, India
[3] Al Azhar Univ, Dept Phys, Fac Sci, Assiut 71542, Egypt
[4] Univ Malaysia Perlis, Inst Nano Elect Engn, Kangar 01000, Perlis, Malaysia
[5] Univ Djillali Liabes Sidi Bel Abbes, Fac Sci, Dept Phys, Sidi Bel Abbes 22000, Algeria
[6] Univ Mascara, Dept Technol, Lab Phys Quant & Modelisat Math LPQ3M, Mascara 29000, Algeria
[7] Univ W Bohemia, New Technol Res Ctr, Univ 8, Plzen 30614, Czech Republic
[8] Univ Malaysia Perlis, Sch Mat Engn, Ctr Excellence Geopolymer & Green Technol, Kangar 01007, Perlis, Malaysia
[9] Mashhad Univ Med Sci, Sch Med, Nucl Med Res Ctr, Mashhad, Iran
[10] SV Coll, Dept Phys, Mat Sci Res Lab, Aligarh 202001, Uttar Pradesh, India
来源
OPTIK | 2016年 / 127卷 / 14期
关键词
Computational analysis; Optical vortices; Vortex splitting; Topological charge; GENERATION;
D O I
10.1016/j.ijleo.2016.03.051
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Control on spacing between splitted topological charges is a matter of concern in optical phenomenon. Splitting of higher order topological charge has been done by the interference with three plane waves at smaller angle than the one which phase engineered beam makes with the axis. Splitting has been realized by introducing additional phase in three plane waves. It is observed that the spacing between splitted topological charges can be controlled by controlling the introduced additional phase in these three plane waves. (C) 2016 Elsevier GmbH. All rights reserved.
引用
收藏
页码:5757 / 5760
页数:4
相关论文
共 18 条
[1]  
Andrews DL, 2008, STRUCTURED LIGHT AND ITS APPLICATIONS: AN INTRODUCTION TO PHASE-STRUCTURED BEAMS AND NANOSCALE OPTICAL FORCES, P1
[2]   Critical point explosions in two-dimensional wave fields [J].
Freund, I .
OPTICS COMMUNICATIONS, 1999, 159 (1-3) :99-117
[3]   Optical vortex trapping of particles [J].
Gahagan, KT ;
Swartzlander, GA .
OPTICS LETTERS, 1996, 21 (11) :827-829
[4]   Vortex lattice generation using interferometric techniques based on lateral shearing [J].
Ghai, Devinder Pal ;
Vyas, Sunil ;
Senthilkumaran, P. ;
Sirohi, R. S. .
OPTICS COMMUNICATIONS, 2009, 282 (14) :2692-2698
[5]   A revolution in optical manipulation [J].
Grier, DG .
NATURE, 2003, 424 (6950) :810-816
[6]   GENERATION OF OPTICAL-PHASE SINGULARITIES BY COMPUTER-GENERATED HOLOGRAMS [J].
HECKENBERG, NR ;
MCDUFF, R ;
SMITH, CP ;
WHITE, AG .
OPTICS LETTERS, 1992, 17 (03) :221-223
[7]   Generation of higher-order optical vortices by a dielectric wedge [J].
Izdebskaya, Y ;
Shvedov, V ;
Volyar, A .
OPTICS LETTERS, 2005, 30 (18) :2472-2474
[8]   Stability of higher order optical vortices produced by spatial light modulators [J].
Kumar, Ashok ;
Vaity, Pravin ;
Bhatt, Jitendra ;
Singh, R. P. .
JOURNAL OF MODERN OPTICS, 2013, 60 (20) :1696-1700
[9]   Optical vortices generation using the Wollaston prism [J].
Kurzynowski, Piotr ;
Wozniak, Mladyslaw A. ;
Fraczek, Ewa .
APPLIED OPTICS, 2006, 45 (30) :7898-7903
[10]   Decay of high order optical vortices in anisotropic nonlinear optical media [J].
Mamaev, AV ;
Saffman, M ;
Zozulya, AA .
PHYSICAL REVIEW LETTERS, 1997, 78 (11) :2108-2111