Prospects for engineering dynamic CRISPR-Cas transcriptional circuits to improve bioproduction

被引:14
作者
Fontana, Jason [1 ,2 ]
Voje, William E. [1 ,2 ,3 ]
Zalatan, Jesse G. [1 ,2 ,4 ]
Carothers, James M. [1 ,2 ,3 ]
机构
[1] Univ Washington, Mol Engn & Sci Inst, Seattle, WA 98195 USA
[2] Univ Washington, Ctr Synthet Biol, Seattle, WA 98195 USA
[3] Univ Washington, Dept Chem Engn, Seattle, WA 98195 USA
[4] Univ Washington, Dept Chem, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
CRISPR-Cas; Transcriptional control; Metabolic engineering; Biosensors; Dynamic control; SEQUENCE-SPECIFIC CONTROL; SACCHAROMYCES-CEREVISIAE; ESCHERICHIA-COLI; GENE-EXPRESSION; GUIDE RNAS; INTERFERENCE CRISPRI; METABOLIC PATHWAYS; IN-VITRO; ACTIVATION; BACTERIA;
D O I
10.1007/s10295-018-2039-z
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Dynamic control of gene expression is emerging as an important strategy for controlling flux in metabolic pathways and improving bioproduction of valuable compounds. Integrating dynamic genetic control tools with CRISPR-Cas transcriptional regulation could significantly improve our ability to fine-tune the expression of multiple endogenous and heterologous genes according to the state of the cell. In this mini-review, we combine an analysis of recent literature with examples from our own work to discuss the prospects and challenges of developing dynamically regulated CRISPR-Cas transcriptional control systems for applications in synthetic biology and metabolic engineering.
引用
收藏
页码:481 / 490
页数:10
相关论文
共 78 条
[1]   RNA-aptamers-in-droplets (RAPID) high-throughput screening for secretory phenotypes [J].
Abatemarco, Joseph ;
Sarhan, Maen F. ;
Wagner, James M. ;
Lin, Jyun-Liang ;
Liu, Leqian ;
Hassouneh, Wafa ;
Yuan, Shuo-Fu ;
Alper, Hal S. ;
Abate, Adam R. .
NATURE COMMUNICATIONS, 2017, 8
[2]   RNA targeting with CRISPR-Cas13 [J].
Abudayyeh, Omar O. ;
Gootenberg, Jonathan S. ;
Essletzbichler, Patrick ;
Han, Shuo ;
Joung, Julia ;
Belanto, Joseph J. ;
Verdine, Vanessa ;
Cox, David B. T. ;
Kellner, Max J. ;
Regev, Aviv ;
Lander, Eric S. ;
Voytas, Daniel F. ;
Ting, Alice Y. ;
Zhang, Feng .
NATURE, 2017, 550 (7675) :280-+
[3]   Sugar Synthesis from CO2 in Escherichia coli [J].
Antonovsky, Niv ;
Gleizer, Shmuel ;
Noor, Elad ;
Zohar, Yehudit ;
Herz, Elad ;
Barenholz, Uri ;
Zelcbuch, Lior ;
Amram, Shira ;
Wides, Aryeh ;
Tepper, Naama ;
Davidi, Dan ;
Bar-On, Yinon ;
Bareia, Tasneem ;
Wernick, David G. ;
Shani, Ido ;
Malitsky, Sergey ;
Jona, Ghil ;
Bar-Even, Arren ;
Milo, Ron .
CELL, 2016, 166 (01) :115-125
[4]   Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system [J].
Bikard, David ;
Jiang, Wenyan ;
Samai, Poulami ;
Hochschild, Ann ;
Zhang, Feng ;
Marraffini, Luciano A. .
NUCLEIC ACIDS RESEARCH, 2013, 41 (15) :7429-7437
[5]   Automated physics-based design of synthetic riboswitches from diverse RNA aptamers [J].
Borujeni, Amin Espah ;
Mishler, Dennis M. ;
Wang, Jingzhi ;
Huso, Walker ;
Salis, Howard M. .
NUCLEIC ACIDS RESEARCH, 2016, 44 (01) :1-13
[6]  
Burke C.R., NAT CHEM BIOL, DOI DOI 10.1101/213538
[7]  
Burke CR, 2016, BIOTECHNOL BIOFUEL P, P117, DOI [10.1016/B978-0-444-63475-7.00005-4, DOI 10.1016/B978-0-444-63475-7.00005-4]
[8]   Tunable protein degradation in bacteria [J].
Cameron, D. Ewen ;
Collins, James J. .
NATURE BIOTECHNOLOGY, 2014, 32 (12) :1276-U149
[9]   Contextualizing context for synthetic biology - identifying causes of failure of synthetic biological systems [J].
Cardinale, Stefano ;
Arkin, Adam Paul .
BIOTECHNOLOGY JOURNAL, 2012, 7 (07) :856-866
[10]  
Carothers James M, 2013, Syst Synth Biol, V7, P79, DOI 10.1007/s11693-013-9118-2