Graph Layouts by t-SNE

被引:68
作者
Kruiger, J. F. [1 ,2 ]
Rauber, P. E. [1 ,3 ]
Martins, R. M. [4 ]
Kerren, A. [4 ]
Kobourov, S. [5 ]
Telea, A. C. [1 ]
机构
[1] Univ Groningen, Groningen, Netherlands
[2] Ecole Natl Aviat Civile, Toulouse, France
[3] Univ Estadual Campinas, Campinas, SP, Brazil
[4] Linnaeus Univ, Vaxjo, Sweden
[5] Univ Arizona, Tucson, AZ 85721 USA
基金
欧盟地平线“2020”;
关键词
VISUAL ANALYSIS; VISUALIZATION;
D O I
10.1111/cgf.13187
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We propose a new graph layout method based on a modification of the t-distributed Stochastic Neighbor Embedding (t-SNE) dimensionality reduction technique. Although t-SNE is one of the best techniques for visualizing high-dimensional data as 2D scatterplots, t-SNE has not been used in the context of classical graph layout. We propose a new graph layout method, tsNET, based on representing a graph with a distance matrix, which together with a modified t-SNE cost function results in desirable layouts. We evaluate our method by a formal comparison with state-of-the-art methods, both visually and via established quality metrics on a comprehensive benchmark, containing real-world and synthetic graphs. As evidenced by the quality metrics and visual inspection, tsNET produces excellent layouts.
引用
收藏
页码:283 / 294
页数:12
相关论文
共 67 条
[1]  
[Anonymous], 2013, Handbook of Graph Drawing and Visualization
[2]  
[Anonymous], 2003, ADV NEURAL INF PROCE
[3]  
[Anonymous], 2006, Mathematica journal, DOI DOI 10.3402/QHW.V6I2.5918
[4]  
Auber D, 2004, MATH VIS, P105
[5]  
Baingana B., 2014, ARXIV140144088
[6]  
Baingana B, 2013, INT CONF ACOUST SPEE, P3113, DOI 10.1109/ICASSP.2013.6638231
[7]  
Bergstra James., Theano: A CPU and GPU math compiler in Python
[8]  
Brandes U, 2007, LECT NOTES COMPUT SC, V4372, P42
[9]  
Brandes U, 2009, LECT NOTES COMPUT SC, V5417, P218, DOI 10.1007/978-3-642-00219-9_21
[10]   Data visualization with multidimensional scaling [J].
Buja, Andreas ;
Swayne, Deborah F. ;
Littman, Michael L. ;
Dean, Nathaniel ;
Hofmann, Heike ;
Chen, Lisha .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2008, 17 (02) :444-472