PIMBALL Binary Neural Networks in Spintronic Memory

被引:23
作者
Resch, Salonik [1 ]
Khatamifard, S. Karen [1 ]
Chowdhury, Zamshed Iqbal [1 ]
Zabihi, Masoud [1 ]
Zhao, Zhengyang [1 ]
Wang, Jian-Ping [1 ]
Sapatnekar, Sachin S. [1 ]
Karpuzcu, Ulya R. [1 ]
机构
[1] Univ Minnesota Twin Cities, 200 Union St SE, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
Processing in memory; non-volatile memory; binary neural networks; computational random access memory;
D O I
10.1145/3357250
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Neural networks span a wide range of applications of industrial and commercial significance. Binary neural networks (BNN) are particularly effective in trading accuracy for performance, energy efficiency, or hardware/software complexity. Here, we introduce a spintronic, re-configurable in-memory BNN accelerator, PIMBALL: Processing In Memory BNN AcceL(L)erator, which allows for massively parallel and energy efficient computation. PIMBALL is capable of being used as a standard spintronic memory (STT-MRAM) array and a computational substrate simultaneously. We evaluate PIMBALL using multiple image classifiers and a genomics kernel. Our simulation results show that PIMBALL is more energy efficient than alternative CPU-, GPU-, and FPGA-based implementations while delivering higher throughput.
引用
收藏
页数:26
相关论文
共 48 条
[1]   ParaPIM: A Parallel Processing-in-Memory Accelerator for Binary-Weight Deep Neural Networks [J].
Angizi, Shaahin ;
He, Zhezhi ;
Fan, Deliang .
24TH ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE (ASP-DAC 2019), 2019, :127-132
[2]  
Angizi S, 2018, ASIA S PACIF DES AUT, P111, DOI 10.1109/ASPDAC.2018.8297291
[3]  
[Anonymous], 2017, ACM SIGARCH COMPUTER, DOI [DOI 10.1145/3093337.3037702, 10.1145/3093337.3037702]
[4]  
[Anonymous], 2018, ARXIV181002068
[5]  
Chen YH, 2016, ISSCC DIG TECH PAP I, V59, P262, DOI 10.1109/ISSCC.2016.7418007
[6]   DaDianNao: A Machine-Learning Supercomputer [J].
Chen, Yunji ;
Luo, Tao ;
Liu, Shaoli ;
Zhang, Shijin ;
He, Liqiang ;
Wang, Jia ;
Li, Ling ;
Chen, Tianshi ;
Xu, Zhiwei ;
Sun, Ninghui ;
Temam, Olivier .
2014 47TH ANNUAL IEEE/ACM INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE (MICRO), 2014, :609-622
[7]   Efficient In-Memory Processing Using Spintronics [J].
Chowdhury, Zamshed ;
Harms, Jonathan D. ;
Khatamifard, S. Karen ;
Zabihi, Masoud ;
Lv, Yang ;
Lyle, Andrew P. ;
Sapatnekar, Sachin S. ;
Karpuzcu, Ulya R. ;
Wang, Jian-Ping .
IEEE COMPUTER ARCHITECTURE LETTERS, 2018, 17 (01) :42-46
[8]   XNOR Neural Engine: A Hardware Accelerator IP for 21.6-fJ/op Binary Neural Network Inference [J].
Conti, Francesco ;
Schiavone, Pasquale Davide ;
Benini, Luca .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2018, 37 (11) :2940-2951
[9]  
Courbariaux M., 2016, ARXIV160202830
[10]   Spin transfer switching in dual MgO magnetic tunnel junctions [J].
Diao, Zhitao ;
Panchula, Alex ;
Ding, Yunfei ;
Pakala, Mahendra ;
Wang, Shengyuan ;
Li, Zhanjie ;
Apalkov, Dmytro ;
Nagai, Hideyasu ;
Driskill-Smith, Alexander ;
Wang, Lien-Chang ;
Chen, Eugene ;
Huai, Yiming .
APPLIED PHYSICS LETTERS, 2007, 90 (13)