Puerarin protects rat brain against ischemia/reperfusion injury by suppressing autophagy via the AMPK-mTOR-ULK1 signaling pathway

被引:101
|
作者
Wang, Jin-Feng [1 ]
Mei, Zhi-Gang [1 ]
Fu, Yang [2 ]
Yang, Song-Bai [3 ]
Zhang, Shi-Zhong [1 ]
Huang, Wei-Feng [1 ]
Xiong, Li [4 ]
Zhou, Hua-Jun [5 ]
Tao, Wei [1 ]
Feng, Zhi-Tao [1 ]
机构
[1] China Three Gorges Univ, Grade Pharmacol Lab Chinese Med 3, Coll Med, Yichang, Hubei, Peoples R China
[2] Xiangyang Hosp Tradit Chinese Med, Xiangyang, Hubei, Peoples R China
[3] China Three Gorges Univ, Yichang Hosp Tradit Chinese Med, Clin Med Coll Tradit Chinese Med, Yichang, Hubei, Peoples R China
[4] Chinese Univ Hong Kong, Dept Med & Therapeut, Hong Kong, Hong Kong, Peoples R China
[5] China Three Gorges Univ, Inst Neurol, Coll Clin Med Sci 1, Yichang, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
nerve regeneration; puerarin; autophagy; cerebral ischemia/reperfusion; AMPK-mTOR-ULK1 signaling pathway; light chain 3; p62; ischemic stroke; AMPK/mTOR; traditional Chinese medicine; middle cerebral artery occlusion; neural regeneration; CEREBRAL-ISCHEMIA INJURY; HEMORRHAGIC TRANSFORMATION; STROKE; NEUROPROTECTION; APOPTOSIS; PHOSPHORYLATION; ACTIVATION; NEURONS; MTOR; INHIBITION;
D O I
10.4103/1673-5374.233441
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Puerarin suppresses autophagy to alleviate cerebral ischemia/reperfusion injury, and accumulating evidence indicates that the AMPK-mTOR signaling pathway regulates the activation of the autophagy pathway through the coordinated phosphorylation of ULK1. In this study, we investigated the mechanisms underlying the neuroprotective effect of puerarin and its role in modulating autophagy via the AMPK-mTOR-ULK1 signaling pathway in the rat middle cerebral artery occlusion model of cerebral ischemia/reperfusion injury. Rats were intraperitoneally injected with puerarin, 50 or 100 mg/kg, daily for 7 days. Then, 30 minutes after the final administration, rats were subjected to transient middle cerebral artery occlusion for 90 minutes. Then, after 24 hours of reperfusion, the Longa score and infarct volume were evaluated in each group. Autophagosome formation was observed by transmission electron microscopy. LC3, Beclin-1 p62, AMPK, mTOR and ULK1 protein expression levels were examined by immunofluorescence and western blot assay. Puerarin substantially reduced the Longa score and infarct volume, and it lessened autophagosome formation in the hippocampal CAI area following cerebral ischemia/reperfusion injury in a dose-dependent manner. Pretreatment with puerarin (50 or 100 mg/kg) reduced Beclin-1 expression and the LC3-II/LC3-I ratio, as well as p-AMPK and pS317-ULK1 levels. In comparison, it increased p62 expression. Furthermore, puerarin at 100 mg/kg dramatically increased the levels of p-mTOR and pS757-ULK1 in the hippocampus on the ischemic side. Our findings suggest that puerarin alleviates autophagy by activating the APMK-mTOR-ULK1 signaling pathway. Thus, puerarin might have therapeutic potential for treating cerebral ischemia/reperfusion injury.
引用
收藏
页码:989 / 998
页数:10
相关论文
共 50 条
  • [11] ESMOLOL PROTECTS AGAINST LPS-INDUCED CARDIAC INJURY VIA THE AMPK/mTOR/ULK1 PATHWAY IN RAT
    Liu, Mao-xia
    Yang, Jia
    Qin, Yan
    Li, Zheng-da
    Jin, Jun
    Zhang, Yan-bing
    Yang, Xin-jing
    SHOCK, 2023, 59 (03): : 469 - 476
  • [12] Puerarin protects brain tissue against cerebral ischemia/reperfusion injury by inhibiting the inflammatory response
    Zhou, Feng
    Wang, Liang
    Liu, Panpan
    Hu, Weiwei
    Zhu, Xiangdong
    Shen, Hong
    Yao, Yuanyuan
    NEURAL REGENERATION RESEARCH, 2014, 9 (23) : 2074 - 2080
  • [13] Schizandrin Protects against OGD/R-Induced Neuronal Injury by Suppressing Autophagy: Involvement of the AMPK/mTOR Pathway
    Wang, Guangyun
    Wang, Tiezheng
    Zhang, Yuanyuan
    Li, Fang
    Yu, Boyang
    Kou, Junping
    MOLECULES, 2019, 24 (19):
  • [14] Puerarin protects against myocardial ischemia/reperfusion injury via the AMPK/Akt/GSK-3β/Nrf2 signaling pathway
    Li, Zhen-Fu
    Wang, Wei
    Jiang, Lei
    Liu, Xu
    Wu, Hui
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, 2018, 11 (05): : 4548 - +
  • [15] Cordycepin alleviates myocardial ischemia/reperfusion injury by enhancing autophagy via AMPK-mTOR pathway
    Xu, Han
    Cheng, Jing
    He, Fei
    JOURNAL OF PHYSIOLOGY AND BIOCHEMISTRY, 2022, 78 (02) : 401 - 413
  • [16] Regulation of Bacillus Calmette-Guerin-induced macrophage autophagy and apoptosis by the AMPK-mTOR-ULK1 pathway
    Li, Ruiqian
    He, Tianle
    Yang, Min
    Xu, Jinghua
    Li, Yongqin
    Wang, Xueyan
    Guo, Xuelian
    Li, Mingzhu
    Xu, Lihua
    MICROBIOLOGICAL RESEARCH, 2025, 290
  • [17] Mu-Xiang-You-Fang protects PC12 cells against OGD/R-induced autophagy via the AMPK/mTOR signaling pathway
    Ma, Hui-xia
    Hou, Fan
    Chen, Ai-ling
    Li, Ting-ting
    Zhu, Ya-fei
    Zhao, Qi-peng
    JOURNAL OF ETHNOPHARMACOLOGY, 2020, 252
  • [18] Puerarin protects brain tissue against cerebral ischemia/reperfusion injury by inhibiting the inflammatory response
    Feng Zhou
    Liang Wang
    Panpan Liu
    Weiwei Hu
    Xiangdong Zhu
    Hong Shen
    Yuanyuan Yao
    NeuralRegenerationResearch, 2014, 9 (23) : 2074 - 2080
  • [19] Melatonin attenuates vascular calcification by activating autophagy via an AMPK/mTOR/ULK1 signaling pathway
    Chen, Wei Ren
    Yang, Jia Qi
    Liu, Fang
    Shen, Xue Qin
    Zhou, Yu Jie
    EXPERIMENTAL CELL RESEARCH, 2020, 389 (01)
  • [20] Kirenol inhibits inflammation challenged by lipopolysaccharide through the AMPK-mTOR-ULK1 autophagy pathway
    Xiao, Juan
    Shen, Xiaofang
    Kou, Ruiming
    Wang, Ke
    Zhai, Lihong
    Ding, Lu
    Chen, Huabo
    Mao, Chun
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2023, 116