Machine learning-enabled framework for the prediction of mechanical properties in new high entropy alloys

被引:51
作者
Bundela, Amit Singh [1 ]
Rahul, M. R. [1 ]
机构
[1] Indian Inst Technol ISM, Dept Fuel Minerals & Met Engn, Dhanbad 826004, Jharkhand, India
关键词
Microhardness; High entropy alloys; Feature selection; Machine learning; Principal component analysis; Materials informatics; SELECTION;
D O I
10.1016/j.jallcom.2022.164578
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Prediction of properties of new compositions will accelerate the material design and development. The current study uses a machine learning framework to predict the microhardness of high entropy alloys. Several feature selection algorithms are used to identify the essential material descriptors. The stability selection algorithm gives optimum material descriptors for the current dataset for the microhardness prediction. Eight different machine learning algorithms are trained and tested for microhardness prediction. The accuracy of prediction improved by reducing the higher-dimensional data to lower dimensions using principal component analysis. The current study shows the testing R-2 score of more than 0.89 for XGBoost, Random forest, and Bagging regressor algorithms. Experimental data confirms the applicability of various trained algorithms for property prediction, and for the current study, ANN shows better performance for the new experimental data. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 36 条
[1]  
[Anonymous], 2005, DESIGN ANAL EXPT
[2]   Yield strength prediction of high-entropy alloys using machine learning [J].
Bhandari, Uttam ;
Rafi, Md Rumman ;
Zhang, Congyan ;
Yang, Shizhong .
MATERIALS TODAY COMMUNICATIONS, 2021, 26
[3]   Multicomponent high-entropy Cantor alloys [J].
Cantor, B. .
PROGRESS IN MATERIALS SCIENCE, 2021, 120
[4]   Designing high entropy superalloys for elevated temperature application [J].
Chen, Yung-Ta ;
Chang, Yao-Jen ;
Murakami, Hideyuki ;
Gorsse, Stephane ;
Yeh, An-Chou .
SCRIPTA MATERIALIA, 2020, 187 :177-182
[5]   High-entropy alloys [J].
George, Easo P. ;
Raabe, Dierk ;
Ritchie, Robert O. .
NATURE REVIEWS MATERIALS, 2019, 4 (08) :515-534
[6]   A fracture-resistant high-entropy alloy for cryogenic applications [J].
Gludovatz, Bernd ;
Hohenwarter, Anton ;
Catoor, Dhiraj ;
Chang, Edwin H. ;
George, Easo P. ;
Ritchie, Robert O. .
SCIENCE, 2014, 345 (6201) :1153-1158
[7]   Database on the mechanical properties of high entropy alloys and complex concentrated alloys [J].
Gorsse, S. ;
Nguyen, M. H. ;
Senkov, O. N. ;
Miracle, D. B. .
DATA IN BRIEF, 2018, 21 :2664-2678
[8]   Machine learning assisted modelling and design of solid solution hardened high entropy alloys [J].
Huang, Xiaoya ;
Jin, Cheng ;
Zhang, Chi ;
Zhang, Hu ;
Fu, Hanwei .
MATERIALS & DESIGN, 2021, 211
[9]   Machine learning guided discovery of super-hard high entropy ceramics [J].
Jaafreh, Russlan ;
Kang, Yoo Seong ;
Kim, Jung-Gu ;
Hamad, Kotiba .
MATERIALS LETTERS, 2022, 306
[10]   Development of ultrahigh strength novel Co-Cr-Fe-Ni-Zr quasi-peritectic high entropy alloy by an integrated approach using experiment and simulation [J].
Jain, Reliance ;
Jain, Avi ;
Rahul, M. R. ;
Kumar, Ashok ;
Dubey, Mrigendra ;
Sabat, Rama Krushna ;
Samal, Sumanta ;
Phanikumar, Gandham .
MATERIALIA, 2020, 14