Longitudinal Neuroimaging Analysis Using Non-Negative Matrix Factorization

被引:0
作者
Stamile, Claudio [1 ]
Cotton, Francois [2 ]
Sappey-Marinier, Dominique [2 ]
Van Huffel, Sabine [1 ]
机构
[1] Katholieke Univ Leuven, Dept Elect Engn ESAT, STADIUS, Leuven, Belgium
[2] Univ Lyon 1, CNRS, INSERM, CREATIS,UMR5220,U1044, Lyon, France
来源
2016 12TH INTERNATIONAL CONFERENCE ON SIGNAL-IMAGE TECHNOLOGY & INTERNET-BASED SYSTEMS (SITIS) | 2016年
基金
欧洲研究理事会;
关键词
Non-Negative Matrix Factorization; White Matter; Multiple Sclerosis; Tractography; Longitudinal Analysis; BRAIN; TRACTOGRAPHY;
D O I
10.1109/SITIS.2016.18
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Longitudinal analysis of neuroimaging data is becoming an important research area. In the last few years analysis of longitudinal data become a crucial point to better understand pathological mechanisms of complex brain diseases such as multiple sclerosis (MS) where white matter (WM) fiber bundles are variably altered by inflammatory events. In this work, we propose a new fully automated method to detect significant longitudinal changes in diffusivity metrics along WM fiber-bundles. This method consists of two steps: i) preprocessing of longitudinal diffusion acquisitions and WM fiber-bundles extraction, ii) application of a new hierarchical non negative matrix factorization (hNMF) algorithm to detect "pathological" changes. This method was applied first, on simulated longitudinal variations, and second, on MS patients longitudinal data. High level of precision, recall and F-Measure were obtained for the detection of small longitudinal changes along the WM fiber-bundles.
引用
收藏
页码:55 / 61
页数:7
相关论文
共 18 条
  • [1] SVD based initialization: A head start for nonnegative matrix factorization
    Boutsidis, C.
    Gallopoulos, E.
    [J]. PATTERN RECOGNITION, 2008, 41 (04) : 1350 - 1362
  • [2] Accelerated Multiplicative Updates and Hierarchical ALS Algorithms for Nonnegative Matrix Factorization
    Gillis, Nicolas
    Glineur, Francois
    [J]. NEURAL COMPUTATION, 2012, 24 (04) : 1085 - 1105
  • [3] Tract probability maps in stereotaxic spaces: Analyses of white matter anatomy and tract-specific quantification
    Hua, Kegang
    Zhang, Jiangyang
    Wakana, Setsu
    Jiang, Hangyi
    Li, Xin
    Reich, Daniel S.
    Calabresi, Peter A.
    Pekar, James J.
    van Zijl, Peter C. M.
    Mori, Susumu
    [J]. NEUROIMAGE, 2008, 39 (01) : 336 - 347
  • [4] A global optimisation method for robust affine registration of brain images
    Jenkinson, M
    Smith, S
    [J]. MEDICAL IMAGE ANALYSIS, 2001, 5 (02) : 143 - 156
  • [5] Learning the parts of objects by non-negative matrix factorization
    Lee, DD
    Seung, HS
    [J]. NATURE, 1999, 401 (6755) : 788 - 791
  • [6] MacQueen JB, 1967, P 5 BERK S MATH STAT, P281
  • [7] Neuroimaging correlates of cognitive impairment and dementia in Parkinson's disease
    Mak, Elijah
    Su, Li
    Williams, Guy B.
    O'Brien, John T.
    [J]. PARKINSONISM & RELATED DISORDERS, 2015, 21 (08) : 862 - 870
  • [8] Thalamic Damage Predicts the Evolution of Primary-Progressive Multiple Sclerosis at 5 Years
    Mesaros, S.
    Rocca, M. A.
    Pagani, E.
    Sormani, M. P.
    Petrolini, M.
    Comi, G.
    Filippi, M.
    [J]. AMERICAN JOURNAL OF NEURORADIOLOGY, 2011, 32 (06) : 1016 - 1020
  • [9] Mori S, 1999, ANN NEUROL, V45, P265, DOI 10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO
  • [10] 2-3