A Semantic Segmentation Algorithm Based on Improved Attention Mechanism

被引:2
作者
Chen, Chunyu [1 ]
Wu, Xinsheng [1 ]
Chen, An [1 ]
机构
[1] South China Univ Technol, Technol Res Ctr Guangdong, Sch Automat Sci & Engn & Unmanned Aerial Vehicle, Guangzhou, Peoples R China
来源
2020 INTERNATIONAL SYMPOSIUM ON AUTONOMOUS SYSTEMS (ISAS) | 2020年
基金
中国国家自然科学基金;
关键词
Intelligent driving; semantic segmentation; attention mechanism;
D O I
10.1109/ISAS49493.2020.9378872
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In the field of intelligent driving, while ensuring real-time capability, how the semantic segmentation task can more accurately grasp the boundary information to obtain accurate segmentation is an urgent problem which wants to be solved. Based on this, the article designs a semantic segmentation network GSANet (Global and Selective Attention Network) based on the visual attention mechanism. The article mainly designs an ASPP structure GASPP (Global Atrous Spatial Pyramid Pooling) with global attention information to provide long-distance detailed information for the semantic segmentation model better. Then, a new SAM (Selective Attention Module) is introduced in the decoder stage to provide different attention weight information for different spatial positions. The results show that both the ASPP with global attention and the decoder with selective attention mechanism can significantly improve the accuracy.
引用
收藏
页码:244 / 248
页数:5
相关论文
共 14 条
[1]  
[Anonymous], Automatic Differentiation in PyTorch
[2]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[3]  
Chen LC, 2018, ADV NEUR IN, V31
[4]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851
[5]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[6]  
Chen LB, 2017, IEEE INT SYMP NANO, P1, DOI 10.1109/NANOARCH.2017.8053709
[7]   Dual Attention Network for Scene Segmentation [J].
Fu, Jun ;
Liu, Jing ;
Tian, Haijie ;
Li, Yong ;
Bao, Yongjun ;
Fang, Zhiwei ;
Lu, Hanqing .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :3141-3149
[8]   CCNet: Criss-Cross Attention for Semantic Segmentation [J].
Huang, Zilong ;
Wang, Xinggang ;
Huang, Lichao ;
Huang, Chang ;
Wei, Yunchao ;
Liu, Wenyu .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :603-612
[9]   RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation [J].
Lin, Guosheng ;
Milan, Anton ;
Shen, Chunhua ;
Reid, Ian .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :5168-5177
[10]  
Long J, 2015, PROC CVPR IEEE, P3431, DOI 10.1109/CVPR.2015.7298965