Highly stable cathode materials for aqueous Zn ion batteries: Synergistic effect of pre-inserted bimetallic ions in vanadium oxide layer

被引:20
作者
Fan, Lanlan [1 ,2 ]
Li, Zhenhuan [2 ,3 ]
机构
[1] Jiangxi Univ Sci & Technol, Jiangxi Prov Key Lab Simulat & Modelling Particul, China Australia Int Res Resources Energy Environm, Nanchang 330013, Jiangxi, Peoples R China
[2] Tiangong Univ, Natl Ctr Int Joint Res Separat Membranes, State Key Lab Separat Membranes & Membrane Proc, Tianjin 300387, Peoples R China
[3] Tiangong Univ, Sch Mat Sci & Engn, Tianjin 300387, Peoples R China
基金
中国国家自然科学基金;
关键词
Solution immersion; Vanadium oxide; Nanobelts; Cathode; Cycle stability; Aqueous Zn ion battery; HIGH-CAPACITY; CHALLENGES; PERSPECTIVES; STRATEGIES;
D O I
10.1016/j.jallcom.2022.164872
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Aqueous Zn ion batteries with cost-effectiveness, high safety, and eco-friendliness have a great potential as an excellent substitute for non-aqueous cells for large-scale energy storage. However, the intercalation of Zn2+ ions in the cathode materials is challenging and complex due to the sluggish diffusion kinetics of Zn2+ ions. Herein, the highly reversible Zn ion battery based on vanadium oxide nanobelts has been developed by using pre-inserted bimetallic ions (Na+ and Ca2+ ions) within the vanadium oxide layer (NCVO) as the cathode and Zn(CF3SO3)2 solution as an electrolyte. Vanadium oxide nanobelts which were calcined at 350 degrees C (NCVO-350) deliver the superior cycle stability with a capacity retention rate close to 100% after 200 cycles at 0.5 A g-1, and 92% retention is also achieved after 3000 cycles at 10 A g-1. The ultrahigh capacity retentions at low/high current densities are attributed to the pre-inserted bimetallic ions within the layers to enhance the structural stability of the vanadium oxide nanobelts. Moreover, the low-cost electrode material preparation process will accelerate the industrialization of aqueous Zn ion batteries. (c) 2022 Published by Elsevier B.V.
引用
收藏
页数:8
相关论文
共 51 条
[1]   Selenium Defect Boosted Electrochemical Performance of Binder-Free VSe2 Nanosheets for Aqueous Zinc-Ion Batteries [J].
Bai, Youcun ;
Zhang, Heng ;
Xiang, Bin ;
Liang, Xinyue ;
Hao, Jiangyu ;
Zhu, Chong ;
Yan, Lijin .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (19) :23230-23238
[2]   Localized Ostwald Ripening Guided Dissolution/Regrowth to Ancient Chinese Coin-shaped VO2 Nanoplates with Enhanced Mass Transfer for Zinc Ion Storage [J].
Cao, Ziyi ;
Wang, Lipeng ;
Zhang, Hong ;
Zhang, Xiang ;
Liao, Jiangwen ;
Dong, Juncai ;
Shi, Jiangyue ;
Zhuang, Peiyuan ;
Cao, Yudong ;
Ye, Mingxin ;
Shen, Jianfeng ;
Ajayan, Pulickel M. .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (25)
[3]   Issues and Challenges Facing Flexible Lithium-Ion Batteries for Practical Application [J].
Cha, Hyungyeon ;
Kim, Junhyeok ;
Lee, Yoonji ;
Cho, Jaephil ;
Park, Minjoon .
SMALL, 2018, 14 (43)
[4]   Recent advances in energy storage mechanism of aqueous zinc-ion batteries [J].
Chen, Duo ;
Lu, Mengjie ;
Cai, Dong ;
Yang, Hang ;
Han, Wei .
JOURNAL OF ENERGY CHEMISTRY, 2021, 54 :712-726
[5]   High-performance Zn battery with transition metal ions co-regulated electrolytic MnO2 [J].
Chuai, Mingyan ;
Yang, Jinlong ;
Wang, Mingming ;
Yuan, Yuan ;
Liu, Zaichun ;
Xu, Yan ;
Yin, Yichen ;
Sun, Jifei ;
Zheng, Xinhua ;
Chen, Na ;
Chen, Wei .
ESCIENCE, 2021, 1 (02) :178-185
[6]   Organic Cathode Materials for Rechargeable Zinc Batteries: Mechanisms, Challenges, and Perspectives [J].
Cui, Jin ;
Guo, Zhaowei ;
Yi, Jin ;
Liu, Xiaoyu ;
Wu, Kai ;
Liang, Pengcheng ;
Li, Qian ;
Liu, Yuyu ;
Wang, Yonggang ;
Xia, Yongyao ;
Zhang, Jiujun .
CHEMSUSCHEM, 2020, 13 (09) :2160-2185
[7]   In Situ Lattice Tunnel Distortion of Vanadium Trioxide for Enhancing Zinc Ion Storage [J].
Ding, Junwei ;
Zheng, Huaiyang ;
Gao, Hongge ;
Liu, Qiannan ;
Hu, Zhe ;
Han, Lifeng ;
Wang, Shiwen ;
Wu, Shide ;
Fang, Shaoming ;
Chou, Shulei .
ADVANCED ENERGY MATERIALS, 2021, 11 (26)
[8]   Vanadium-based cathodes for aqueous zinc-ion batteries: from crystal structures, diffusion channels to storage mechanisms [J].
Ding, Junwei ;
Gao, Hongge ;
Ji, Dongfang ;
Zhao, Kang ;
Wang, Shiwen ;
Cheng, Fangyi .
JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (09) :5258-5275
[9]   In-situ electrochemical conversion of vanadium dioxide for enhanced zinc-ion storage with large voltage range [J].
Ding, Junwei ;
Gao, Hongge ;
Zhao, Kang ;
Zheng, Huaiyang ;
Zhang, Hang ;
Han, Lifeng ;
Wang, Shiwen ;
Wu, Shide ;
Fang, Shaoming ;
Cheng, Fangyi .
JOURNAL OF POWER SOURCES, 2021, 487
[10]   Influence of pH and ionic strength on vanadium(V) oxides formation.: From V2O5•nH2O gels to crystalline NaV3O8•1.5H2O [J].
Durupthy, O ;
Steunou, N ;
Coradin, T ;
Maquet, J ;
Bonhomme, C ;
Livage, J .
JOURNAL OF MATERIALS CHEMISTRY, 2005, 15 (10) :1090-1098