KPCA plus LDA: A complete kernel fisher discriminant framework for feature extraction and recognition

被引:631
作者
Yang, J [1 ]
Frangi, AF
Yang, JY
Zhang, D
Jin, Z
机构
[1] Nanjing Univ Sci & Technol, Dept Comp Sci, Nanjing 210094, Peoples R China
[2] Pompeu Fabra Univ, Dept Technol, Computat Imaging Lab, E-08003 Barcelona, Spain
[3] Hong Kong Polytech Univ, Dept Comp, Kowloon, Hong Kong, Peoples R China
[4] Univ Autonoma Barcelona, Ctr Comp Vis, E-08193 Barcelona, Spain
基金
中国国家自然科学基金;
关键词
kernel-based methods; subspace methods; principal component analysis (PCA); Fisher linear discriminant analysis (LDA or FLD); feature extraction; machine learning; face recognition; handwritten digit recognition;
D O I
10.1109/TPAMI.2005.33
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper examines the theory of kernel Fisher discriminant analysis (KFD) in a Hilbert space and develops a two-phase KFD framework, i.e., kernel principal component analysis (KPCA) plus Fisher linear discriminant analysis (LDA). This framework provides novel insights into the nature of KFD. Based on this framework, the authors propose a complete kernel Fisher discriminant analysis (CKFD) algorithm. CKFD can be used to carry out discriminant analysis in "double discriminant subspaces." The fact that, it can make full use of two kinds of discriminant information, regular and irregular, makes CKFD a more powerful discriminator. The proposed algorithm was tested and evaluated using the FERET face database and the CENPARMI handwritten numeral database. The experimental results show that CKFD outperforms other KFD algorithms.
引用
收藏
页码:230 / 244
页数:15
相关论文
共 52 条
  • [31] An introduction to kernel-based learning algorithms
    Müller, KR
    Mika, S
    Rätsch, G
    Tsuda, K
    Schölkopf, B
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2001, 12 (02): : 181 - 201
  • [32] The FERET evaluation methodology for face-recognition algorithms
    Phillips, PJ
    Moon, H
    Rizvi, SA
    Rauss, PJ
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2000, 22 (10) : 1090 - 1104
  • [33] Phillips PJ, 2004, FACIAL RECOGNITION T
  • [34] Roth V, 2000, ADV NEUR IN, V12, P568
  • [35] Rudin W., 1973, FUNCTIONAL ANAL
  • [36] Nonlinear component analysis as a kernel eigenvalue problem
    Scholkopf, B
    Smola, A
    Muller, KR
    [J]. NEURAL COMPUTATION, 1998, 10 (05) : 1299 - 1319
  • [37] Using discriminant eigenfeatures for image retrieval
    Swets, DL
    Weng, JJ
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1996, 18 (08) : 831 - 836
  • [38] Tikhonov A.N., 1997, SOLUTION ILL POSED P
  • [39] EIGENFACES FOR RECOGNITION
    TURK, M
    PENTLAND, A
    [J]. JOURNAL OF COGNITIVE NEUROSCIENCE, 1991, 3 (01) : 71 - 86
  • [40] Van Gestel T, 2002, NEURAL COMPUT, V14, P1115, DOI 10.1162/089976602753633411