Predictive toxicology of chemicals and database mining

被引:0
|
作者
Wang, JS [1 ]
Lai, LH [1 ]
Tang, YQ [1 ]
机构
[1] Peking Univ, Coll Chem & Mol Engn, Inst Phys Chem, Beijing 100871, Peoples R China
来源
CHINESE SCIENCE BULLETIN | 2000年 / 45卷 / 12期
基金
中国国家自然科学基金;
关键词
predictive toxicology; database mining; similarity analysis; structure patterns; QSAR;
D O I
10.1007/BF02887181
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The toxic chemicals from the database Registry of Toxic Effects of Chemical Substances (RTECS) were analyzed by structural similarity comparison, which shows that the structure patterns or characteristics of toxic chemicals exist in a sufficiently large database. Then, a two-step strategy was proposed to explore noncongeneric toxic chemicals in the database: the screening of structure patterns by similarity comparison and the derivation of detailed relationship between structure and activity by using comparative molecular field analysis (CoMFA) of Quantitative Structure-Activity Relationship (QSAR) technologies. From the performance of the procedure, such a stepwise scheme is demonstrated to be feasible and effective to mine a database of toxic chemicals. It can be anticipated that database mining of toxic chemicals will be a new area for predictive toxicology of chemicals.
引用
收藏
页码:1093 / 1097
页数:5
相关论文
共 50 条
  • [31] Quantum descriptors for predictive toxicology of halogenated aliphatic hydrocarbons
    Trohalaki, S
    Pachter, R
    SAR AND QSAR IN ENVIRONMENTAL RESEARCH, 2003, 14 (02) : 131 - 143
  • [32] Human Organoids for Predictive Toxicology Research and Drug Development
    Matsui, Toshikatsu
    Shinozawa, Tadahiro
    FRONTIERS IN GENETICS, 2021, 12
  • [33] Outsourcing in silico predictive toxicology: technologies, markets and paradigms
    Ismail, Alexandre
    FUTURE MEDICINAL CHEMISTRY, 2010, 2 (10) : 1507 - 1510
  • [34] Using Pareto points for model identification in predictive toxicology
    Anna Palczewska
    Daniel Neagu
    Mick Ridley
    Journal of Cheminformatics, 5
  • [35] Fermentation database mining by pattern recognition
    Stephanopoulos, G
    Locher, G
    Duff, MJ
    Kamimura, R
    Stephanopoulos, G
    BIOTECHNOLOGY AND BIOENGINEERING, 1997, 53 (05) : 443 - 452
  • [36] MSQL: A query language for database mining
    Imielinski, T
    Virmani, A
    DATA MINING AND KNOWLEDGE DISCOVERY, 1999, 3 (04) : 373 - 408
  • [37] Ontology Building by Dictionary Database Mining
    Deliyska, B.
    Rozeva, A.
    Malamov, D.
    APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE '12), 2012, 1497 : 387 - 394
  • [38] MSQL: A Query Language for Database Mining
    Tomasz Imieliński
    Aashu Virmani
    Data Mining and Knowledge Discovery, 1999, 3 : 373 - 408
  • [39] Towards a qAOP framework for predictive toxicology - Linking data to decisions
    Paini, Alicia
    Campia, Ivana
    Cronin, Mark T. D.
    Asturiol, David
    Ceriani, Lidia
    Exner, Thomas E.
    Gao, Wang
    Gomes, Caroline
    Kruisselbrink, Johannes
    Martens, Marvin
    Meek, M. E. Bette
    Pamies, David
    Pletz, Julia
    Scholz, Stefan
    Schuettler, Andreas
    Spinu, Nicoleta
    Villeneuve, Daniel L.
    Wittwehr, Clemens
    Worth, Andrew
    Luijten, Mirjam
    COMPUTATIONAL TOXICOLOGY, 2022, 21
  • [40] Cellular imaging: a key phenotypic screening strategy for predictive toxicology
    Xu, Jinghai J.
    FRONTIERS IN PHARMACOLOGY, 2015, 6